首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  完全免费   1篇
  海洋学   7篇
  2022年   1篇
  2011年   1篇
  2008年   2篇
  2007年   1篇
  2006年   1篇
  2003年   1篇
排序方式: 共有7条查询结果,搜索用时 343 毫秒
1
1.
The sources and distribution of organic matter (OM) in surface waters and sediments from Winyah Bay (South Carolina, USA) were investigated using a variety of analytical techniques, including elemental, stable isotope and organic biomarker analyses. Several locations along the estuary salinity gradient were sampled during four different periods of contrasting river discharge and tidal range. The dissolved organic carbon (DOC) concentrations of surface waters ranged from 7 mg l−1 in the lower bay stations closest to the ocean to 20 mg l−1 in the river and upper bay samples. There was a general linear relationship between DOC concentrations and salinity in three of the four sampling periods. In contrast, particulate organic carbon (POC) concentrations were significantly lower (0.1–3 mg l−1) and showed no relationship with salinity. The high molecular weight dissolved OM (HMW DOM) isolated from selected water samples collected along the bay displayed atomic carbon:nitrogen ratios ([C/N]a) and stable carbon isotopic compositions of organic carbon (δ13COC) that ranged from 10 to 30 and from −28 to −25‰, respectively. Combined, such compositions indicate that in most HMW DOM samples, the majority of the OM originates from terrigenous sources, with smaller contributions from riverine and estuarine phytoplankton. In contrast, the [C/N]a ratios of particulate OM (POM) samples varied significantly among the collection periods, ranging from low values of 5 to high values of >20. Overall, the trends in [C/N]a ratios indicated that algal sources of POM were most important during the early and late summer, whereas terrigenous sources dominated in the winter and early spring.In Winyah Bay bottom sediments, the concentrations of the mineral-associated OM were positively correlated with sediment surface area. The [C/N]a ratios and δ13COC compositions of the bulk sedimentary OM ranged from 5 to 45 and from −28 to −23‰, respectively. These compositions were consistent with predominant contributions of terrigenous sources and lesser (but significant) inputs of freshwater, estuarine and marine phytoplankton. The highest terrigenous contents were found in sediments from the river and upper bay sites, with smaller contributions to the lower parts of the estuary. The yields of lignin-derived CuO oxidation products from Winyah Bay sediments indicated that the terrigenous OM in these samples was composed of variable mixtures of relatively fresh vascular plant detritus and moderately altered soil OM. Based on the lignin phenol compositions, most of this material appeared to be derived from angiosperm and gymnosperm vascular plant sources similar to those found in the upland coastal forests in this region. A few samples displayed lignin compositions that suggested a more significant contribution from marsh C3 grasses. However, there was no evidence of inputs of Spartina alterniflora (a C4 grass) remains from the salt marshes that surround the lower sections of Winyah Bay.  相似文献
2.
3.
Grain-size distributions, total organic carbon (TOC) and total nitrogen (TN) concentrations, and TOC/TN ratios (C/N) were analysed for surface sediments from the Lower Yangtze River-East China Sea (ECS) shelf system. Hierarchical cluster analysis of grain-size parameters (mode, mean, sorting, skewness and kurtosis) has been employed to characterize grain-size compositions. The results suggest there are five grain-size compositional types (type-I–V) that fingerprint distinct depositional conditions. In areas with high sedimentation rates, hydrological sorting preferentially enriches the fraction coarser than 6.4ø (12 μm) in shallow seafloor sediments (water depth<30 m) by transporting the finer fraction to the deeper seafloor (water depth>30 m), and thus forms grain-size compositional type-I (shallow) and type-II (deep). In the open shelf, where modern sediment supply is very limited, grain-size types-III–V are identified according to different winnowing intensity. Overall TOC contents significantly correlate with mud proportions, suggesting muddy sediments are the primary control on OM accumulation. However, de-association of terrestrial OM from fine sediments in the Estuary and the occurrence of presumably relict OM in the open shelf exert additional controls on OM dispersal and carbon cycling in the ECS. By considering geography, oceanography, sediment source, and the relation between sedimentation conditions and sedimentary OM distributions, we define six depositional settings: the lower river, the estuary, the coast, the offshore upwelling area, the erosional area, and the open shelf. These settings describe the sediment dispersal and associated organic matter cycling in the Lower Yangtze River-ECS shelf system.  相似文献
4.
Zhanfei Liu  Cindy Lee 《Marine Chemistry》2007,105(3-4):240-257
Past studies have suggested that desiccation enhances hydrophobicity of salt marsh sediment, and that drying and rewetting sediment can be used to investigate sorption mechanisms of amino acids and other organic compounds [Liu, Z., Lee, C., 2006. Drying effects on sorption capacity of coastal sediment: The importance of architecture and polarity of organic matter. Geochim. Cosmochim. Acta 70, 3313–3324]. Here we further develop this technique to study sorption of hydrophobic and hydrophilic organic compounds in a wide range of marine sediments. Our results show that hydrophilic compounds sorb strongly to wet coastal sediments; in dried sediments, sorption of hydrophilic compounds decreases, while sorption of hydrophobic compounds is greatly enhanced. Small compounds with aromatic rings sorb more in dried than wet coastal sediments, suggesting that aromatic groups have a stronger effect on sorption than polar groups like amino and carboxyl moieties. Sorption of lysine, glutamic acid and putrescine decreases greatly when sediment is pretreated with KCl, indicating the importance of cation ion exchange. However, α-amino acids sorb much more than corresponding β- or γ-amino acids, and l-alanine sorbs more than d-alanine, suggesting that amino group location and chiral selectivity play an important role in sorption. Comparison of lysine and tyrosine sorption in different sediments indicates that source and diagenetic state of organic matter are important factors determining sorption capacity. Lysine sorbs much more to organic detritus from salt marsh sediment than to fresh Spartina root materials, marine particles, lignin or humic acids, indicating the importance of structural integrity in sorption. Desorption hysteresis of glutamic acid, putrescine and lysine (in dried sediment) suggests the presence of enzyme-type sorption sites of high sorption energy or multiple binding mechanisms. Taken together, these findings suggest that organic matter plays the major role in amino acid sorption in organic-rich sediments.  相似文献
5.
This paper examines disposal of metals and the origin, characteristics, and distribution of sedimentary organic matter (SOM) in a Mediterranean karstic estuary in the north-eastern Adriatic. This environment offers a real-time, small model system for studies of geochemical processes in microtidal Mediterranean estuaries that are infilling with sediments and classified as river-dominated disequilibrium estuaries. The results have shown that the longitudinal distribution of heavy metals in sediments follows the sedimentation dynamics and deposition pattern of river-borne, clay mineral particles. The highest concentration of metals was found in the restricted upper part of the estuary, characterized by rapid deposition of clay particles and terrestrial sedimentary organic matter, and decreases toward the open sea. The vertical distribution of metals in sediment cores depends on the prevailing pH and Eh conditions. Significant increases of the concentrations of metals in the uppermost strata are the result of recent anthropogenic inputs. The share of the terrestrial component in SOM, estimated by N/Corg atomic ratios and δ13C values, decreases with distance from the river mouth. The small vertical variation in δ13C values of SOM indicates that a fast sedimentation rate overrides the diagenetically determined decomposition. The results obtained indicate that river-borne inorganic particles, natural terrigenous organic material, and anthropogenic metal loads are trapped in sediments of the estuarine system. Under the prevailing conditions, there is negligible transport towards the open sea.  相似文献
6.
The stable nitrogen isotope ratio (δ 15N) in macroalgae is effectively used as a time-integrated bioindicator to record nitrogen sources for primary producers during their growing periods in aquatic ecosystems. However, the utility of this tool is limited because the occurrence of these organisms is often restricted in space and time. To investigate the potential of chemical composition in sedimentary organic matter (SOM) as a proxy for time-integrated environmental conditions, nitrogen (N) and carbon (C) contents and their stable isotope ratios (δ 15N and δ 13C) were determined, and systematically cross-checked against corresponding values in macroalgae at the Shiraho fringing reef in Okinawa, Japan. Preliminary trials showed that δ 15N in SOM processed by the “wash-out method” for δ 13C analysis yielded similar δ 15N values to the bulk sediment, despite the loss of some SOM during the process. The amounts of organic matter and the ratio of the HCl-insoluble portion were variable within the reef, probably reflecting local vegetation and subsequent decomposition. The distribution of δ 15N and δ 13C in SOM showed similar trends to those of macroalgae, with mostly constant differences of 1.4‰ and −6.7‰, respectively. These differences throughout the reef appeared to be explained in terms of mixed contributions from macrophyte and epibenthic microalgae growing in different seasons and years, with their debris undergoing diagenetic alteration. Therefore, macroalgae and SOM δ-values can be used in a complementary manner, over various time scales, as indicators of the integrated effect of dissolved inorganic nitrogen (DIN) sources on coral reef ecosystems.  相似文献
7.
深入理解气候变化影响下海洋动力过程变化及其多重环境效应,是了解海岸海洋系统未来演化趋势的重要途径。因此,本文在辽东半岛东岸泥质区取柱状样一根,通过沉积物粒度、TOC/TN含量、δ13C以及δ15N等指标,分析气候变化下山东半岛北岸跨锋面物质输运强度变化,及其对辽东半岛东岸泥质区沉积有机质含量和来源的影响。结果表明,高海面时期以来,山东半岛北岸跨锋面物质输运可分为两个变化阶段:6.5~2.9 cal ka BP,其强度随冬季风和黄海暖流的不断减弱而减弱;2.9 cal ka BP至今,由于冬季风较弱而黄海暖流总体强盛,其强度随黄海暖流的波动而呈现4段式的复杂变化。此外,辽东半岛东岸泥质区陆源和海源有机质含量与其强度呈正相关,相应于跨锋面物质输运强度的变化,6.5~2.9 cal ka BP期间,陆源和海源有机质含量持续减少,而2.9 cal ka BP至今则呈现复杂的4段式变化。总体上看,自6.5 cal ka BP以来,陆源有机质贡献率不断下降而海源有机质贡献率逐渐上升。  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号