首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42篇
  国内免费   8篇
  完全免费   6篇
  海洋学   56篇
  2019年   1篇
  2018年   3篇
  2017年   1篇
  2016年   2篇
  2015年   3篇
  2014年   1篇
  2012年   3篇
  2011年   4篇
  2010年   8篇
  2009年   9篇
  2008年   4篇
  2007年   4篇
  2006年   2篇
  2005年   2篇
  2003年   2篇
  2002年   1篇
  2000年   2篇
  1997年   1篇
  1995年   1篇
  1991年   1篇
  1987年   1篇
排序方式: 共有56条查询结果,搜索用时 31 毫秒
1.
现代黄河三角洲沉积物临界剪切应力研究   总被引:1,自引:1,他引:1  
为研究现代黄河三角洲沉积物临界剪切应力空间分布特征及其影响要素,本文在现代黄河三角洲不同沉积区域,垂直海岸线布设测线,采用黏结力仪进行沉积物临界剪切应力测试,并在相应测点开展沉积物物理力学性质与粒度成分测量工作。研究结果表明高潮滩沉积物临界剪切应力最高,在1.1~4.02Pa之间,沉积物不易发生侵蚀,含水量低、干容重大、黏粒与粉粒含量高、平均粒径小、不排水剪切强度大是高潮滩沉积物临界剪切应力偏高的重要因素;中潮滩沉积物受生物活动影响显著,临界剪切应力在0.10~1.90Pa之间,生物活动扰动、生物排泄及遗体遗迹的程度与数量是造成不同区域测试差异的重要原因;低潮滩沉积物临界剪切应力很低,在0.08~0.80Pa之间,沉积物极易发生侵蚀,含水量高、干容重偏低、砂砾含量高、平均粒径大、不排水剪切强度小是其典型的沉积物物理力学性质,也是造成低潮滩沉积物临界剪切应力普遍低于高潮滩的重要原因;现代黄河三角洲沉积物临界剪切应力区域特征表现为北部沉积物临界剪切应力水平最低,在0.11~0.4Pa之间,东部最高,在2.8~4.55Pa之间,南部与东北部居中,分别在0.63~0.84Pa与0.83~2.99Pa之间,东北部空间非均匀性分布显著,粒度组分的分异是导致沉积物临界剪切应力区域差异显著的重要因素,黏粒含量高的沉积区域沉积物临界剪切应力普遍高于砂砾含量高的沉积区;与世界其他大型河口三角洲相比,现代黄河三角洲沉积物临界剪切应力水平偏低但非均匀程度较高。  相似文献
2.
On the basis of the measurement data pertaining to waves, current, and sediment in February 2012 in the mouth bar of the Modaomen Estuary, the Soulsby formulae with an iterative method are applied to calculating bottom shear stresses (BSS) and their effect on a sediment resuspension. Swell induced BSS have been found to be the most important part of the BSS. In this study, the correlation coefficient between a wavecurrent shear stress and SSC is 0.86, and that between current shear stresses and SSC is only 0.40. The peaks of the SSC are consistent with the height and the BSS of the swell. The swell is the main mechanism for the sediment re-suspension, and the tidal current effect on sediment re-suspension is small. The peaks of the SSC are centered on the high tidal level, and the flood tide enhances the wave shear stresses and the SSC near the bottom. The critical shear stress for sediment re-suspension at the observation station is between 0.20 and 0.30 N/m2. Tidal currents are too weak to stir up the bottom sediment into the flow, but a WCI (wave-current interaction) is strong enough to re-suspend the coarse sediment.  相似文献
3.
Research on Measurement of Bed Shear Stress Under Wave?Current Interaction   总被引:1,自引:1,他引:0  
The movement of sediment in estuary and on coast is directly restricted by the bed shear stress. Therefore, the research on the basic problem of sediment movement by the bed shear stress is an important way to research the theory of sediment movement. However, there is not a measuring and computing method to measure the bed shear stress under a complicated dynamic effect like wave and current. This paper describes the measurement and test research on the bed shear stress in a long launder of direct current by the new instrument named thermal shearometer based on micro-nanotechnology. As shown by the research results, the thermal shearometer has a high response frequency and strong stability. The measured results can reflect the basic change of the bed shear stress under wave and wave?current effect, and confirm that the method of measuring bed shear stress under wave?current effect with thermal shearometer is feasible. Meanwhile, a preliminary method to compute the shear stress compounded by wave?current is put forward according to the tested and measured results, and then a reference for further study on the basic theory of sediment movement under a complicated dynamic effect is provided.  相似文献
4.
Experimental Study on the Bed Shear Stress Under Breaking Waves   总被引:1,自引:0,他引:1  
The object of present study is to investigate the bed shear stress on a slope under regular breaking waves by a novel instrument named Micro-Electro-Mechanical System (MEMS) flexible hot-film shear stress sensor. The sensors were calibrated before application, and then a wave flume experiment was conducted to study the bed shear stress for the case of regular waves spilling and plunging on a 1:15 smooth PVC slope. The experiment shows that the sensor is feasible for the measurement of the bed shear stress under breaking waves. For regular incident waves, the bed shear stress is mainly periodic in both outside and inside the breaking point. The fluctuations of the bed shear stress increase significantly after waves breaking due to the turbulence and vortexes generated by breaking waves. For plunging breaker, the extreme value of the mean maximum bed shear stress appears after the plunging point, and the more violent the wave breaks, the more dramatic increase of the maximum bed shear stress will occur. For spilling breaker, the increase of the maximum bed shear stress along the slope is gradual compared with the plunging breaker. At last, an empirical equation about the relationship between the maximum bed shear stress and the surf similarity parameter is given, which can be used to estimate the maximum bed shear stress under breaking waves in practice.  相似文献
5.
强潮环境下悬沙对底部边界层的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
王韫玮  高抒 《海洋科学》2010,34(1):52-57
对杭州湾金山深槽附近两个定点站位的大潮期间同步水文、泥沙观测结果进行了粉砂分布区再悬浮效应的分析,提出了根据再悬浮过程反演底床切应力的新方法。研究结果表明,在强潮动力、高悬沙质量浓度环境下,即使无密度成层性,悬沙质量浓度对底部边界层的影响仍然存在,表现为底部切应力的减小。在这一条件下,如仍然采用卡门普朗特模型(κ=0.4),则估算的底部切应力将大大高于实际的数值。  相似文献
6.
探索海床液化对沉积物再悬浮贡献的波浪水槽实验   总被引:1,自引:0,他引:1       下载免费PDF全文
通常认为沉积物的再悬浮主要来源于过剩剪切应力对海床表面的逐层侵蚀。虽然许多研究已经注意到波致海床液化在其中的重要性,然而,至今鲜有成果对其进行可靠的定量评估。本文即尝试通过一系列大型波浪水槽实验,初步对其进行量化评估。实验结果表明:在相对波高 (波高水深比) 为 4/20 和6/20的情况下, 黄河三角洲粉质沉积物的液化分别可以贡献52.5% 和 66.8%的再悬浮沉积物, 液化贡献与相对水深呈现正相关;进一步综合前人研究结果对比分析, 构建了用于定量描述液化贡献与相对水深关系的参数化方程。液化主要通过两种机制影响再悬浮过程:(1) 液化后黏聚力的减弱与渗流托举力,导致沉积物抗侵蚀性衰减 (2) 有部分细颗粒沉积物通过液化海床内部的渗流 “泵送” 输运到海床表面。  相似文献
7.
Nearshore shoaling and breaking waves can drive a complex circulation system of wave-induced currents. In the cross-shore direction, the local vertical imbalance between the gradient of radiation stress and that of pressure due to the setup drives an offshore flow near the bottom, called ‘undertow’, which plays a significant role in the beach profile evolution and the structure stability in coastal regions. A 1DV undertow model was developed based on the relationship between the turbulent shear stress and t...  相似文献
8.
Tidal current velocity profile in the near-bed layers has been widely studied. The results showed that velocity profile in the near-bed layer obviously departure from the traditional logarithmic profile, due to the acceleration or deceleration. Although the logarithmic linear profile can reduce the rate of deviation from this, only it is a lower-order approximate solution. In this paper, considering the unsteady and non-linear features of tidal motion, the double logarithmic profile near-bed layers in estuarine and coastal waters is established on the assumption that the turbulent shear stress along the water depth was parabolic distribution, and on the basis of Prandtl''s mixing length theory and von Karman''s self-similar theory. Having been verified the data observed at the West Solent in the south of England, and comparison of the logarithmic linear profile, it found that the double logarithmic profile is more precious than the latter. At last, the discussed results showed that:(1) The parabolic distribution of the tidal shear stresses verified good by the field data and experimental data, can be better reflected the basic features of the tidal shear stress deviating from linear distribution that is downward when to accelerate, upward when to decelerate. (2) The traditional logarithmic velocity profile is the zero-order approximation solution of the double logarithmic profile, the logarithmic linear profile is the first order, and the logarithmic parabolic profile is the second order. (3) Ignoring the conditions of diffusion and convection in the tidal movement, the double logarithmic profile can reflect the tidal properties of acceleration or deceleration, so that the calculation of the friction velocity and roughness length are more reasonable. When the acceleration or the deceleration is about zero, the double logarithmic profile becomes the logarithmic profile.  相似文献
9.
张卓  宋志尧 《海洋与湖沼》2015,46(5):995-1000
潮流的流速分布和湍流切应力的分布密切相关。为了研究潮流湍流切应力的特征和变化规律,本文从潮流运动方程推导出随潮流呈周期性变化的湍流切应力随深度的分布表达式。从江苏近海现场实测流速剖面中计算得到一个潮周期内的湍流切应力的变化过程。通过将实测值与本文理论解的比较发现,计算值能很好地反映出实测值的变化特征,尤其是能正确地反映潮流在加速和减速过程中,湍流切应力偏离线性分布呈现上凹和下凹的现象,以及只有在加减速转换的时候切应力才呈现线性分布的特点。最后,通过分析湍流切应力振幅及相位沿水深的变化情况,认为反映潮流周期、涡粘性和水深之间关系的参数Ri是决定湍流切应力弯曲程度及分布形态的重要参数。对于近海潮流,水深是影响湍流切应力偏离线性程度的主要因素。  相似文献
10.
A simple relationship has been developed between the wall coordinate y+ and Kolmogorov's length scale using direct numerical simulation (DNS) data for a steady boundary layer. This relationship is then utilized to modify two popular versions of low Reynolds number k–ε model. The modified models are used to analyse a transitional oscillatory boundary layer. A detailed comparison has been made by virtue of velocity profile, turbulent kinetic energy, Reynolds stress and wall shear stress with the available DNS data. It is observed that the low Reynolds number models used in the present study can predict the boundary layer properties in an excellent manner.  相似文献
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号