首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  海洋学   5篇
  2017年   1篇
  2009年   1篇
  2001年   3篇
排序方式: 共有5条查询结果,搜索用时 62 毫秒
1
1.
At present,more and more offshore wind farms have been built and numerous projects are on the drawing tables.Therefore,the study on the safety of collision between ships and offshore wind turbines (OWT) is of great practical significance.The present study takes the advantage of the famous LS-DYNA explicit code to simulate the dynamic process of the collision between a typical 3MW offshore wind turbine model with monopile foundation and a simplified 2000t-class ship model.In the simulation,the added mass eff...  相似文献
2.
针对非通航孔桥墩,研发了一种自适应拦截网防船舶撞击装置,主要由系泊大浮体、系泊锚链和固定锚、自适应小浮筒、拦截网、恒阻力缆绳以及触发钢索所组成。阐述了该防撞装置设计原理,即偏航船舶撞击该防撞装置,小浮筒会带动拦截网自适应地从水平状态竖起展开,包裹住来撞船首,再通过相连浮体的运动阻力和恒阻力缆绳来吸收船舶动能,拦截住船舶,保护非通航孔桥墩安全。随后介绍在福建平潭海峡大桥引桥附近海域实施的实船撞击自适应拦截网防撞装置的大型试验,试验结果显示:自适应拦截网成功升起,船舶被安全拦截,从而实验证实了设计原理与设计方案的可行性和可靠性。最后,采用大型水动力分析软件AQWA对防撞装置拦截船舶过程进行数值模拟,模拟结果与实验结果基本一致,说明了数值仿真具有较好的计算精度和可靠性,能够为该防撞装置的结构设计与优化提供重要的参考。  相似文献
3.
In this paper a discussion of three failure criteria during a tanker collision takes place. The ‘Fracture Criterion’ developed recently [Glykas, A., Samouelides, E., Das, P.K. (1996) Energy absorption capacity of plates under lateral loading. Proceedings of the 6th International Conference of Offshore and Polar Engineers, Los Angeles '96, Vol. IV, pp. 502–509.], deals with the amount of energy required so that arbitrary crack propagation originates from microscopic material flaws of the steel structure, in areas of high strain concentration during large deflections. This fracture criterion is applied in critical areas of a tanker bow structure during head-on collision with a vertical rigid body and its validity is examined in comparison to other two state of the art failure criteria. The penetration of the tanker vessel as well as the time to rest from the initiation of the collision are determined in relation to the failure criteria.  相似文献
4.
In this paper a numerical approach to the grounding problem takes place. It aims to show the contribution of the energy dissipated in the structure due to elasto-plastic deformation. The analytical methods developed until now, neglect this amount of energy, since they are simulating the vessel as a rigid beam. A tanker vessel is modelled with the Finite Element Package ABAQUS and energy conservation during a grounding scenario on rigid slope takes place. The results are presented both analytically and numerically and comparison in the energy quantities is shown and discussed.  相似文献
5.
The energy dissipation on the bow structure is calculated during a “head-on” collision with a rigid body, using finite element analysis. Gerard's method (Gerard, G., 1958. The crippling strength of compression elements. Journal of the Aeronautical Sciences), an empirical approach, is compared with the results produced by ABAQUS in terms of velocity, energy and penetrating distance. The energy conservation theorem is applied and the contribution of all individual structural members in terms of elastic and plastic energy is calculated. The strain distribution is shown for those members responsible for the water tightness and structural integrity of the structure. The global bending of the upper part of the bow is shown as well as the effect of the total ship mass inertia, phenomena which have not been incorporated into Gerard's approach ( Gerard, 1958). The final time of rest predicted from both methods is compatible and this validates the reliability of the numerical approach.  相似文献
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号