首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   42311篇
  免费   8289篇
  国内免费   9355篇
测绘学   3644篇
大气科学   5322篇
地球物理   7825篇
地质学   24151篇
海洋学   5703篇
天文学   3312篇
综合类   2790篇
自然地理   7208篇
  2024年   85篇
  2023年   535篇
  2022年   1534篇
  2021年   1727篇
  2020年   1716篇
  2019年   1744篇
  2018年   1487篇
  2017年   1580篇
  2016年   1603篇
  2015年   1854篇
  2014年   2478篇
  2013年   2619篇
  2012年   2691篇
  2011年   2875篇
  2010年   2472篇
  2009年   3076篇
  2008年   3026篇
  2007年   3098篇
  2006年   3124篇
  2005年   2826篇
  2004年   2485篇
  2003年   2321篇
  2002年   1996篇
  2001年   1753篇
  2000年   1651篇
  1999年   1437篇
  1998年   1242篇
  1997年   879篇
  1996年   746篇
  1995年   630篇
  1994年   591篇
  1993年   511篇
  1992年   367篇
  1991年   323篇
  1990年   217篇
  1989年   173篇
  1988年   140篇
  1987年   78篇
  1986年   52篇
  1985年   47篇
  1984年   28篇
  1983年   21篇
  1982年   19篇
  1981年   19篇
  1980年   9篇
  1979年   7篇
  1978年   17篇
  1977年   7篇
  1976年   5篇
  1954年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
We introduce the freely available web-based Water in an Agricultural Landscape—NUčice Database (WALNUD) dataset that includes both hydrological and meteorological records at the Nučice experimental catchment (0.53 km2), which is representative of an intensively farmed landscape in the Czech Republic. The Nučice experimental catchment was established in 2011 for the observation of rainfall–runoff processes, soil erosion processes, and water balance of a cultivated landscape. The average altitude is 401 m a.s.l., the mean land slope is 3.9%, and the climate is humid continental (mean annual temperature 7.9°C, annual precipitation 630 mm). The catchment is drained by an artificially straightened stream and consists of three fields covering over 95% of the area which are managed by two different farmers. The typical crops are winter wheat, rapeseed, and alfalfa. The installed equipment includes a standard meteorological station, several rain gauges distributed across the basin, and a flume with an H-type facing that is used to monitor stream discharge, water turbidity, and basic water quality indicators. Additionally, the groundwater level and soil water content at various depths near the stream are recorded. Recently, large-scale soil moisture monitoring efforts have been introduced with the installation of two cosmic-ray neutron sensors for soil moisture monitoring. The datasets consist of observed variables (e.g. measured precipitation, air temperature, stream discharge, and soil moisture) and are available online for public use. The cross-seasonal, open access datasets at this small-scale agricultural catchment will benefit not only hydrologists but also local farmers.  相似文献   
2.
Wildfire increases the potential connectivity of runoff and sediment throughout watersheds due to greater bare soil, runoff and erosion as compared to pre-fire conditions. This research examines the connectivity of post-fire runoff and sediment from hillslopes (< 1.5 ha; n = 31) and catchments (< 1000 ha; n = 10) within two watersheds (< 1500 ha) burned by the 2012 High Park Fire in northcentral Colorado, USA. Our objectives were to: (1) identify sources and quantify magnitudes of post-fire runoff and erosion at nested hillslopes and watersheds for two rain storms with varied duration, intensity and antecedent precipitation; and (2) assess the factors affecting the magnitude and connectivity of runoff and sediment across spatial scales for these two rain storms. The two summer storms that are the focus of this research occurred during the third summer after burning. The first storm had low intensity rainfall over 11 hours (return interval <1–2 years), whereas the second event had high intensity rainfall over 1 hour (return interval <1–10 years). The lower intensity storm was preceded by high antecedent rainfall and led to low hillslope sediment yields and channel incision at most locations, whereas the high intensity storm led to infiltration-excess overland flow, high sediment yields, in-stream sediment deposition and channel substrate fining. For both storms, hillslope-to-stream sediment delivery ratios and area-normalised cross-sectional channel change increased with the percent of catchment that burned at high severity. For the high intensity storm, hillslope-to-stream sediment delivery ratios decreased with unconfined channel length (%). The findings quantify post-fire connectivity and sediment delivery from hillslopes and streams, and highlight how different types of storms can cause varying magnitues and spatial patterns of sediment transport and deposition from hillslopes through stream channel networks.  相似文献   
3.
Mitigating and adapting to global changes requires a better understanding of the response of the Biosphere to these environmental variations. Human disturbances and their effects act in the long term (decades to centuries) and consequently, a similar time frame is needed to fully understand the hydrological and biogeochemical functioning of a natural system. To this end, the ‘Centre National de la Recherche Scientifique’ (CNRS) promotes and certifies long-term monitoring tools called national observation services or ‘Service National d'Observation’ (SNO) in a large range of hydrological and biogeochemical systems (e.g., cryosphere, catchments, aquifers). The SNO investigating peatlands, the SNO ‘Tourbières’, was certified in 2011 ( https://www.sno-tourbieres.cnrs.fr/ ). Peatlands are mostly found in the high latitudes of the northern hemisphere and French peatlands are located in the southern part of this area. Thus, they are located in environmental conditions that will occur in northern peatlands in coming decades or centuries and can be considered as sentinels. The SNO Tourbières is composed of four peatlands: La Guette (lowland central France), Landemarais (lowland oceanic western France), Frasne (upland continental eastern France) and Bernadouze (upland southern France). Thirty target variables are monitored to study the hydrological and biogeochemical functioning of the sites. They are grouped into four datasets: hydrology, fluvial export of organic matter, greenhouse gas fluxes and meteorology/soil physics. The data from all sites follow a common processing chain from the sensors to the public repository. The raw data are stored on an FTP server. After operator or automatic processing, data are stored in a database, from which a web application extracts the data to make them available ( https://data-snot.cnrs.fr/data-access/ ). Each year at least, an archive of each dataset is stored in Zenodo, with a digital object identifier (DOI) attribution ( https://zenodo.org/communities/sno_tourbieres_data/ ).  相似文献   
4.
Large dams and reservoirs alter not only the natural flow regimes of streams and rivers but also their flooding cycles and flood magnitudes. Although the effect of dams and reservoirs has been reported for some vulnerable locations, the understanding of the inner-basin variation with respect to the effects remains limited. In this study, we analyse the Three Gorges Dam (TGD) built on the Changjiang mainstream (Yangtze River) to investigate the dam effect variations in the system of interconnected water bodies located downstream. We investigated the effect of flow alterations along the downstream river network using discharge time series at different gauging stations. The river–lake interactions (referring to the interactions between the Changjiang mainstream and its tributary lakes i.e. the Dongting and Poyang lakes) and their roles in modifying the TGD effect intensity were also investigated in the large-scale river–lake system. The results show that the water storage of the tributary lakes decreased after the activation of the TGD. Severe droughts occurred in the lakes, weakening their ability to recharge the Changjiang mainstream. As a consequence, the effect of the TGD on the Changjiang flow increase during the dry season diminished quickly downstream of the dam, whereas its impact on the flow decrease during the wet season gradually exacerbated along the mainstream, especially at sites located downstream of the lake outlets. Therefore, when assessing dam-induced hydrological changes, special attention should be paid to the changes in the storage of tributary lakes and the associated effects in the mainstream. This is of high importance for managing the water resource trade-offs between different water bodies in dam-affected riverine systems.  相似文献   
5.
Water flow velocity is an important hydraulic variable in hydrological and soil erosion models, and is greatly affected by freezing and thawing of the surface soil layer in cold high-altitude regions. The accurate measurement of rill flow velocity when impacted by the thawing process is critical to simulate runoff and sediment transport processes. In this study, an electrolyte tracer modelling method was used to measure rill flow velocity along a meadow soil slope at different thaw depths under simulated rainfall. Rill flow velocity was measured using four thawed soil depths (0, 1, 2 and 10 cm), four slope gradients (5°, 10°, 15° and 20°) and four rainfall intensities (30, 60, 90 and 120 mm·h−1). The results showed that the increase in thawed soil depth caused a decrease in rill flow velocity, whereby the rate of this decrease was also diminishing. Whilst the rill flow velocity was positively correlated with slope gradient and rainfall intensity, the response of rill flow velocity to these influencing factors varied with thawed soil depth. The mechanism by which thawed soil depth influenced rill flow velocity was attributed to the consumption of runoff energy, slope surface roughness, and the headcut effect. Rill flow velocity was modelled by thawed soil depth, slope gradient and rainfall intensity using an empirical function. This function predicted values that were in good agreement with the measured data. These results provide the foundation for a better understanding of the effect of thawed soil depth on slope hydrology, erosion and the parameterization scheme for hydrological and soil erosion models.  相似文献   
6.
To enhance the utilization efficiency of farmland irrigation water and reduce the leakage of water conveyance channels, the leakage process of channels was simulated dynamically. The simulated results were compared with data measured in laboratory experiments, and the performance of the model was evaluated. The results indicated that the simulated values of the model were consistent with the observation values, and the R2 values varied between 0.91 and 0.99. In addition, based on the laboratory experiments, a water supply system (Mariotte bottles) and soil box were built using plexiglass. Three influencing factors, namely, the channel form, soil texture and channel cross-sectional area, were varied to observe and calculate the resulting cumulative infiltration amount, infiltration rate and wetting front migration distance. HYDRUS-3D software was used to solve the three-dimensional soil water movement equation under different initial conditions. The results demonstrated that the U-shaped channel was more effective than the trapezoidal channel in increasing the utilization efficiency of the water resources. A U-shaped channel with a small channel cross-sectional area should be adopted and the soil particle size should be prioritized in the construction of water conveyance channels for farmlands. The simulation results were in agreement with the observed results, which indicates that HYDRUS-3D is a reliable tool that can accurately simulate the soil moisture movement in water conveyance channels. The research results can provide a reference for the design and operation of farmland irrigation systems.  相似文献   
7.
The Bear Brook Watershed in Maine (BBWM) is a long-term research site established to study the response of forest ecosystem function to environmental disturbances of chronic acidic deposition and ecosystem nitrogen enrichment. Starting in 1989, the West Bear (treated) watershed received bimonthly applications of ammonium sulfate [(NH4)2SO4] fertilizer from above the canopy, whereas East Bear (reference) received ambient deposition. The treatments were stopped in 2016, marking the beginning of the recovery phase. Research at the site has focused on soils, streams, and vegetation. Here, we describe data collected over three decades at the BBWM—input and stream output nutrient fluxes, quantitative soil pits and soil chemistry, and soil temperature and moisture.  相似文献   
8.
The use of the sulphate mass balance (SMB) between precipitation and soil water as a supplementary method to estimate the diffuse recharge rate assumes that the sulphate in soil water originated entirely from atmospheric deposition; however, the origin of sulphate in soil and groundwater is often unclear, especially in loess aquifers. This study analysed the sulphur (δ34S-SO4) and oxygen (δ18O-SO4) isotopes of sulphate in precipitation, water-extractable soil water, and shallow groundwater samples and used these data along with hydrochemical data to determine the sources of sulphate in the thick unsaturated zone and groundwater of a loess aquifer. The results suggest that sulphate in groundwater mainly originated from old precipitation. When precipitation percolates through the unsaturated zone to recharge groundwater, sulphates were rarely dissolved due to the formation of CaCO3 film on the surface of sulphate minerals. The water-extractable sulphate in the deep unsaturated zone (>10 m) was mainly derived from the dissolution of evaporite minerals and there was no oxidation of sulphide minerals during the extraction of soil water by elutriating soil samples with deionized water. The water-extractable concentration of SO4 was not representative of the actual SO4 concentration in mobile soil water. Therefore, the recharge rate cannot be estimated by the SMB method using the water-extractable concentration of SO4 in the loess areas. This study is important for identifying sulphate sources and clarifying the proper method for estimating the recharge rate in loess aquifers.  相似文献   
9.
Active wildfire seasons in the western U.S. warrant the evaluation of post-fire forest management strategies. Ground-based salvage logging is often used to recover economic loss of burned timber. In unburned forests, ground-based logging often follows best management practices by leaving undisturbed areas near streams called stream buffers. However, the effectiveness of these buffers has not been tested in a post-wildfire setting. This experiment tested buffer width effectiveness with a novel field-simulated rill experiment using sediment-laden runoff (25 g/L) released over 40 min at evenly timed flow rates (50, 100 and 150 L/min) to measure surface runoff travel length and sediment concentration under unburned and high and low soil burn severity conditions at 2-, 10- and 22-month post-fire. High severity areas 2-month post-fire had rill lengths of up to 100 m. Rill length significantly decreased over time as vegetation regrowth provided ground cover. Sediment concentration and sediment dropout rate also varied significantly by soil burn severity. Sediment concentrations were 19 g/L for the highest flow 2-month post-fire and reduced to 6.9–14 g/L 10-month post-fire due to abundant vegetation recovery. The amount of sediment dropping out of the flow consistently increased over the study period with the low burn severity rate of 1.15 g L−1 m−1 approaching the unburned rate of 1.29 g L−1 m−1 by 2-year post-fire. These results suggest that an often-used standard, 15 m buffer, was sufficient to contain surface runoff and reduce sediment concentration on unburned sites, however buffers on high burn severity sites need to be eight times greater (120 m) immediately after wildfire and four times greater (60 m) 1-year post-fire. Low burn severity areas 1-year post-fire may need to be only twice the width of an unburned buffer (30 m), and 2-year post-fire these could return to unburned widths.  相似文献   
10.
钱磊 《天文学报》2021,62(1):7-87
通过结构函数可以测量湍流的能量级联速率.在实际观测中,无法测量分子云中气体的3维速度,这使得其湍流结构函数难以测量.对垂直于视线方向的薄分子云的情形,结构函数Stt2可以通过云核速度弥散(core velocity dispersion,CVD)进行测量,CVD2=1/2Stt2.对此进行推广,对于不垂直于视线方向的薄分子云,CVD2=1/2Stt2(1-1/8cos2θ)R2/3,其中,θ是视线方向与投影方向的夹角,平均投影距离与3维距离之比R可以用第2类椭圆积分E(k,φ)表示为R=2/πE(cosθ,π/2).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号