首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107325篇
  免费   20498篇
  国内免费   22496篇
测绘学   10757篇
大气科学   14032篇
地球物理   22354篇
地质学   55788篇
海洋学   14794篇
天文学   10165篇
综合类   7231篇
自然地理   15198篇
  2024年   221篇
  2023年   1185篇
  2022年   3170篇
  2021年   3756篇
  2020年   3983篇
  2019年   3940篇
  2018年   3473篇
  2017年   4064篇
  2016年   3933篇
  2015年   4561篇
  2014年   5854篇
  2013年   6426篇
  2012年   6579篇
  2011年   7244篇
  2010年   6220篇
  2009年   7731篇
  2008年   7592篇
  2007年   8036篇
  2006年   7718篇
  2005年   6819篇
  2004年   6239篇
  2003年   5748篇
  2002年   4924篇
  2001年   4371篇
  2000年   4014篇
  1999年   3687篇
  1998年   3219篇
  1997年   2582篇
  1996年   2260篇
  1995年   1998篇
  1994年   1917篇
  1993年   1648篇
  1992年   1222篇
  1991年   931篇
  1990年   746篇
  1989年   593篇
  1988年   472篇
  1987年   279篇
  1986年   203篇
  1985年   177篇
  1984年   89篇
  1983年   73篇
  1982年   75篇
  1981年   56篇
  1980年   51篇
  1979年   40篇
  1978年   62篇
  1977年   42篇
  1976年   14篇
  1954年   35篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
2.
区域中长期地震危险性数值分析研究,需要对其初始构造应力场有所了解,但目前以及未来一段时期内仍无法直接观测到深部孕震层区域的应力场状况.本文首先基于岩石库仑-摩尔破裂准则,利用青藏高原及邻区百年历史范围内的强震信息,来反演估算该区域的初始应力场.然后,考虑区域构造应力加载及强震造成的应力扰动共同作用,重现了历史强震的发展过程.然而对于初始应力场的反演估算,本文仅能给出区域其上下限的极限值,并不能唯一确定.因此,采用Monte Carlo随机法,进行大量独立的随机试验计算,生成数千种有差异的区域初始应力场模型,且保证每种模型都能令历史强震有序发生,但未来应力场演化过程不尽相同.最后,将数千种模型在未来时间段内的危险性预测结果集成为数理统计结果,据此给出了区域未来的地震危险性概率分布图.初步结果显示未来强震危险性概率较高地区集中在巴颜喀拉块体边界及鲜水河断裂带地区.  相似文献   
3.
Amik Lake or, historically, Lake of Antioch, was a large freshwater body in the lower Orontes River basin (Hatay Province, Turkey) that was drained in the 1940s–1970s. Several endemic animal species were described from this lake, including the freshwater mussel Anodonta pseudodopsis Locard, 1883 (Bivalvia: Unionidae) characterized by a large rounded shell covered by a peculiar yellow or yellowish-brown periostracum. Molecular analyses of topotypes of this nominal taxon collected from the former lake’s tributaries in the Amik Plain indicate that it is an intra-specific lineage of the widespread Anodonta anatina (Linnaeus, 1758) based on the mitochondrial COI and 16S rRNA, and the nuclear 28S rRNA gene fragments. Geometric morphometric analyses using the lectotype and topotypes of Anodonta pseudodopsis support our DNA-based hypothesis on the status of this nominal taxon. A new synonymy is provided as follows: Anodonta anatina = Anodonta pseudodopsis syn. nov. The syntype of Anodonta pseudodopsis SMF 5129 “See von Antiochia” (Senckenberg Research Institute and Natural History Museum, Frankfurt, Germany) is designated here to be the lectotype of this nominal taxon. Finally, we conclude that Anodonta anatina range covers the Orontes River basin in Turkey and Syria and the Nahr al-Kabir al-Shamali River in the Latakia Governorate of Syria. This intraspecific lineage of Anodonta anatina and other freshwater mussels of the Middle East are highly threatened due to multiple anthropogenic impacts and must be a focus of international conservation efforts. The Karasu River in eastern Turkey hosts viable populations of all freshwater mussel species of the Orontes’s fauna and can be considered one of the most important water bodies for the conservation of these imperiled animals in the region.  相似文献   
4.
Studies on recent earthquakes highlighted that buildings with minimal structural damage still suffer from extensive damage and failure of nonstructural components. The dropping and damage of suspended ceiling systems, which typically consist of acceleration-sensitive nonstructural elements, resulted in lengthy functional disruptions and extended recovery time. This article experimentally and analytically examined the vibration properties of an integrated ceiling system considering the interactions with surrounding electrical equipment. The theoretical stiffness and corresponding frequency of electrical equipment were initially derived and then verified by subsequent vibration tests and numerical analyses. The seismic performance of the air conditioner (AC) was evaluated with different installment configurations based on design spectra and floor response spectra. Vibration tests of the suspended integrated ceiling system considering the interactions with surrounding equipment showed that the inclusion of peripheral constraints increased the first horizontal vibration frequency of the ceiling system by a factor of approximately 6. The natural frequencies of all components in the integrated ceiling system were almost identical, which was attributed to the coupled behavior between the ceiling panels and surrounding equipment, emphasizing the effect of interactions between adjacent components during dynamic analysis. Based on the above experimental investigation, an associated numerical model of the integrated ceiling system was created. Finally, corresponding parametric studies that included the interactions with surrounding equipment, reinforcing braces of ACs and strengthening members at the rise-up location between two elevations were performed.  相似文献   
5.
The simultaneous transfer of pore fluid and vapour was studied in the unsaturated shallow subsurface of a Plio-Pleistocene marine mudstone badland slope in southwestern Taiwan during the dry season using field monitoring data and numerical simulations. Data from field monitoring show mass-basis water contents of ~0.05 to ~0.10 that decrease towards the unsaturated ground surface and were invariant during the middle part of the dry season, except for daily fluctuations. In addition, the observed daily fluctuations in water content correlate with fluctuations in bedrock temperature, especially at depths of 2.5–5.0 cm. Periodic increases in water content occurred most notably during the day, when the bedrock temperature showed the greatest increase. Water contents then decreased to the previous state as bedrock temperature decreased during the night. Calculated vapour fluxes within the mudstone during the day increased up to 6 × 10−6–1 × 10−5 kg m−2 s−1, deriving a 0.01–0.02 increase in mass-basis water content at 2.5 cm depth for a 12-h period. This agrees with field monitoring data, suggesting that increases in water content occurred due to vapour intrusions into the bedrock. Pore water electrical conductivity (EC) showed periodic variations due to vapour intrusion, and gradually increased between the ground surface and depths of 2.5–5.0 cm. In contrast, pore water EC gradually decreased between 15 and 40 cm depth. Calculated water fluxes at depths of 2.5–40.0 cm varied from −4 × 10−6 to −2 × 10−9 kg m−2 s−1. These fluxes generated an increase in solute concentrations at the ground surface, with negative values of water flux indicating an upwards movement of water towards the surface. We show that the increase in solute content due to solute transfer from depth is highly dependent on variations in water flux with depth. © 2020 John Wiley & Sons, Ltd.  相似文献   
6.
Investigating the performance that can be achieved with different hydrological models across catchments with varying characteristics is a requirement for identifying an adequate model for any catchment, gauged or ungauged, just based on information about its climate and catchment properties. As parameter uncertainty increases with the number of model parameters, it is important not only to identify a model achieving good results but also to aim at the simplest model still able to provide acceptable results. The main objective of this study is to identify the climate and catchment properties determining the minimal required complexity of a hydrological model. As previous studies indicate that the required model complexity varies with the temporal scale, the study considers the performance at the daily, monthly, and annual timescales. In agreement with previous studies, the results show that catchments located in arid areas tend to be more difficult to model. They therefore require more complex models for achieving an acceptable performance. For determining which other factors influence model performance, an analysis was carried out for four catchment groups (snowy, arid, and eastern and western catchments). The results show that the baseflow and aridity indices are the most consistent predictors of model performance across catchment groups and timescales. Both properties are negatively correlated with model performance. Other relevant predictors are the fraction of snow in the annual precipitation (negative correlation with model performance), soil depth (negative correlation with model performance), and some other soil properties. It was observed that the sign of the correlation between the catchment characteristics and model performance varies between clusters in some cases, stressing the difficulties encountered in large sample analyses. Regarding the impact of the timescale, the study confirmed previous results indicating that more complex models are needed for shorter timescales.  相似文献   
7.
Base flows are important for tropical regions with pronounced dry seasons, which are facing increasing water demands. Base flow generation, however, is one of the most challenging hydrological processes to characterize in the tropics. In many years during the May–December wet season in the Panama Canal Watershed (PCW), base flows in rivers abruptly increase. This increase persists until the start of the December–April dry season. Understanding this unusual base flow jump (BFJ) behaviour is critical to improve water provisioning in the seasonal tropics, especially during droughts and extended dry seasons. This study developed an integrated approach combining piecewise regression on cumulative average base flow and sensitivity analysis to calculate the timing and magnitude of BFJ. Rainfall, forest cover, mean land surface slope, catchment area, and estimated subsurface storage were tested as predictors for the occurrence and magnitude of the BFJs in seven subcatchments of the PCW. Sensitivity analysis on correlated predictors allowed ranking of predictor contributions due to isolated and cross-correlation effects. Correlations between observed BFJs and BFJs predicted by watershed and rainfall-related predictors were 0.92 and 0.65 for BFJ timing and magnitude, respectively. Forest cover was the second most significant predictor after cumulative rainfall for jump magnitude, owing to larger subsurface storage and groundwater recharge in forests than pastures. Catchments in the mountainous eastern PCW always generated larger jumps due to their higher rainfall and greater forest cover than the western PCW catchments. The cross-correlations between predictors contributed to more than 50% of the jump variances. The results demonstrate the importance of rainfall gradient and catchment characteristics in affecting the sudden and sustained BFJs, which can help inform land management decisions intended to enhance water supplies in the tropics. This study underscores the need for more research to further understand the hydrological processes involved in the BFJ phenomenon, including better BFJ models and field characterizations, to help improve tropical ecosystem services under a changing environment.  相似文献   
8.
Salinity is a vital factor that regulates leaf photosynthesis and growth of mangroves, and it frequently undergoes large seasonal and daily fluctuations creating a range of environments – oligohaline to hyperhaline. Here, we examined the hypotheses that mangroves benefit opportunistically from low salinity resulting from daily fluctuations and as such, mangroves under daily fluctuating salinity (FS) grow better than those under constant salinity (CS) conditions. We compared growth, salt accumulation, gas exchange, and chlorophyll fluorescence of leaves of mangrove Bruguiera gymnorhiza seedlings growing in freshwater (FW), CS (15 practical salinity units, PSU), and daily FS (0–30 PSU, average of 4.8 PSU) conditions. The traits of FS-treated leaves were measured in seedlings under 15 PSU. FS-treated seedlings had greater leaf biomass than those in other treatment groups. Moreover, leaf photosynthetic rate, capacity to regulate photoelectron uptake/transfer, and leaf succulence were significantly higher in FS than in CS treatment. However, leaf water-use efficiency showed the opposite trend. In addition to higher concentrations of Na+ and Cl, FS-treated leaves accumulated more Ca2+ and K+. We concluded that daily FS can enhance water absorption, photosynthesis, and growth of leaves, as well as alter plant biomass allocation patterns, thereby positively affecting B. gymnorhiza. Mangroves that experience daily FS may increase their adaptability by reducing salt build-up and water deficits when their roots are temporally subjected to low salinity or FW and by absorbing sufficient amounts of Na+ and Cl for osmotic adjustment when their roots are subsequently exposed to saline water.  相似文献   
9.
10.
In cockpit karst landscapes, fluxes from upland areas contribute large volumes of water to low-lying depressions and stream flow. Hydrograph hysteresis and similarity between monitoring sites is important for understanding the space–time variability of hydrologic responses across the “hillslope–depression–stream” continuum. In this study, the hysteretic feature of hydrographs was assessed by characterizing the loop-like relationships between responses at upstream sites relative to subsurface discharge at the outlet of a small karst catchment. A classification of hydrograph responses based on the multi-scale smoothing Kernel -derived distance classifies the hydrograph responses on the basis of similarities between hillslope and depression sites, and those at the catchment outlet. Results demonstrate that the temporal and spatial variability of hydrograph hysteresis and similarity between hillslope flow and outlet stream flow can be explained by the local heterogeneity of depression aquifer. Large depression storage deficits emerging in the highly heterogeneous aquifer produce strong hysteresis and multiple relationships of upstream hydrographs relative to the outlet subsurface discharge. In contrast, when depression storage deficits are filled during consecutive rainfall events, depression hydrographs at the high permeability sites are almost synchronous or exhibit a monotonous function with the hydrographs at the outlet. This reduced hydrograph hysteresis enhances preferential flow paths in fractured rocks and conduits that can accelerate the hillslope flow to the outlet. Therefore, classification of hydrograph similarities between any upstream sites and the catchment outlet can help to identify the dominant hydrological functions in the heterogeneous karst catchment.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号