首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1549篇
  免费   342篇
  国内免费   501篇
测绘学   28篇
大气科学   649篇
地球物理   529篇
地质学   356篇
海洋学   468篇
天文学   63篇
综合类   58篇
自然地理   241篇
  2024年   3篇
  2023年   16篇
  2022年   35篇
  2021年   54篇
  2020年   82篇
  2019年   79篇
  2018年   66篇
  2017年   109篇
  2016年   84篇
  2015年   92篇
  2014年   129篇
  2013年   183篇
  2012年   105篇
  2011年   103篇
  2010年   88篇
  2009年   141篇
  2008年   120篇
  2007年   115篇
  2006年   113篇
  2005年   92篇
  2004年   96篇
  2003年   72篇
  2002年   67篇
  2001年   53篇
  2000年   56篇
  1999年   41篇
  1998年   42篇
  1997年   29篇
  1996年   20篇
  1995年   15篇
  1994年   22篇
  1993年   16篇
  1992年   9篇
  1991年   8篇
  1990年   4篇
  1989年   2篇
  1988年   11篇
  1987年   4篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   1篇
  1978年   1篇
排序方式: 共有2392条查询结果,搜索用时 18 毫秒
1.
Current efforts to assess changes to the wetland hydrology caused by growing anthropogenic pressures in the Athabasca Oil Sands Region (AOSR) require well-founded spatial and temporal estimates of actual evapotranspiration (ET), which is the dominant component of the water budget in this region. This study assessed growing season (May–September) and peak growing season (July) ET variability at a treed moderate-rich fen and treed poor fen (in 2013–2018), open poor fen (in 2011–2014), and saline fen (in 2015–2018) using eddy covariance technique and a set of complementary environmental data. Seasonal fluctuations in ET were positively related to net radiation, air temperature and vapour pressure deficit and followed trends typical for the Boreal Plains (BP) and AOSR with highest rates in June–July. However, no strong effect of water table position on ET was found. Strong surface control on ET is evident from lower ET values than potential evapotranspiration (PET); the lowest ET/PET was observed at saline fen, followed by open fen, moderately treed fen, and heavily treed fen, suggesting a strong influence of vegetation on water loss. In most years PET exceeded precipitation (P), and positive relations between P/PET and ET were observed with the highest July ET rates occurring under P/PET ~1. However, during months with P/PET > 1, increased P/PET was associated with decreased July ET. With respect to 30-year mean values of air temperature and P in the area, both dry and wet, cool and warm growing seasons (GS) were observed. No clear trends between ET values and GS wetness/coldness were found, but all wet GS were characterized by peak growing seasons with high daily ET variability.  相似文献   
2.
通过有效解决建设用地子类划分,实现定量评价城市热环境的空间分异性,对改善城市生态环境、实现城市化的健康发展具有重要的意义和科学价值。论文以广州市为例,参考自然城市的概念,基于5类兴趣点(Point Of Interest,POI)开放数据,结合城市建设用地分类标准,构建5类自然区块;在Landsat 8遥感影像地表温度反演的基础上,计算分析自然区块下地表热场等级分布格局、热场平均值及热环境足迹范围,以对城市热环境空间分异性进行评价。研究表明:① 自然区块的构建,能准确地反映各类POI数据空间分布情况,能够实现对建设用地子类型的划分;② 5类自然区块内部地表热场等级均以高温像元为主,但等级分布具有显著差异。同时,自然区块的热场平均值由高到低的排序为:工业区块>商业服务业区块>交通与道路区块>居住区块>公共管理与服务区块;③ 自然区块形成的高温集聚区,存在热量扩散现象,实际影响范围大于其物理边界,5类自然区块的热环境足迹范围具有分异性。热环境足迹影响范围由大到小排序为:工业区块>商业服务业区块>居住区块>道路与交通区块>公共管理与服务区块。研究结果可为微观尺度上分析城市热环境、改善城市生态环境、实现城市化的健康发展提供科学依据。  相似文献   
3.
Xu  Yue  Shen  Zehao  Ying  Lingxiao  Zang  Runguo  Jiang  Youxu 《地理学报(英文版)》2019,29(7):1142-1158
Journal of Geographical Sciences - Understanding biogeographic patterns and the mechanisms underlying them has been a main issue in macroecology and biogeography, and has implications for...  相似文献   
4.
The 2018 typhoon season in the western North Pacific(WNP) was highly active, with 26 named tropical cyclones(TCs) from June to November, which exceeded the climatological mean(22) and was the second busiest season over the past twenty years. More TCs formed in the eastern region of the WNP and the northern region of the South China Sea(SCS). More TCs took the northeast quadrant in the WNP, recurving from northwestward to northward and causing heavy damages in China's Mainland(69.73 billion yuan) in 2018. Multiscale climate variability is conducive to an active season via an enhanced monsoon trough and a weakened subtropical high in the WNP. The large-scale backgrounds in 2018 showed a favorable environment for TCs established by a developing central Pacific(CP) El Ni?o and positive Pacific meridional mode(PMM)episode on interannual timescales. The tropical central Pacific(TCP) SST forcing exhibits primary control on TCs in the WNP and large-scale circulations, which are insensitive to the PMM. During CP El Ni?o years, anomalous convection associated with the TCP warming leads to significantly increased anomalous cyclonic circulation in the WNP because of a Gill-type Rossby wave response. As a result, the weakened subtropical high and enhanced monsoon trough shift eastward and northward, which favor TC genesis and development. Although such increased TC activity in 2018 might be slightly suppressed by interdecadal climate variability, it was mostly attributed to the favorable interannual background. In addition, high-frequency climate signals,such as intraseasonal oscillations(ISOs) and synoptic-scale disturbances(SSDs), interacted with the enhanced monsoon trough and strongly modulated regional TC genesis and development in 2018.  相似文献   
5.
文中利用加拿大环境部气候研究中心研发的惩罚最大t检验方法,选取均一的邻近气象站为参考站,结合元数据信息,对1960-2017年成山头海洋站海表温度序列进行了均一性检验与订正。利用订正后的海表温度序列对成山头海温气候变化特征进行分析。结果表明,订正前后年平均海表温度趋势发生了明显改变,表现出海温上升趋势较订正前加强的特征,增暖趋势由订正前的0.04℃/10 a上升到0.15℃/10 a,其中最暖的5个年份多发生在1980年以后,分别为1973年、1989年、2002年、2007年和2017年。海表温度总体呈显著上升趋势和明显的年代际波动,20世纪60年代至80年代末为偏冷阶段,之后开始增暖,20世纪90年代至今为偏暖阶段。1960-2017年,成山头的海温突变点在1987年,是一次增暖性突变,与中国大陆的气温突变特征和气温变化阶段性特征非常一致。  相似文献   
6.
随着海洋生态系统模型的发展,生态变量增多,众多生物过程参数量值的确定成为制约生态环境模拟的瓶颈问题,生态系统结构区域性要求模型中的生态参数具有区域差异。为探究不同海区的关键参数及参数敏感度的空间差异,本研究在渤、黄海建立了ROMS-CoSiNE物理–生物耦合的高分辨率生态系统模型,并对13种生态参数的敏感度空间分布进行分析。结果表明:南黄海中部与渤海及近岸海域的敏感度差异较大。渤海敏感度最大的参数为决定光合速率的浮游植物P-I曲线初始斜率,其次为浮游动物捕食半饱和常数和浮游动物最大捕食率。而南黄海中部敏感度最大的参数为浮游动物最大捕食率,其次为浮游植物死亡率和浮游植物P-I曲线初始斜率。结合敏感度分布及浮游植物生物量收支得出,渤海水体透明度较南黄海偏低、浮游植物生长光限制较强,是引起浮游植物P-I曲线初始斜率敏感度在渤海高于黄海的主要原因。浮游动物最大捕食率及浮游植物死亡率的敏感度空间差异,受渤、黄海浮游植物生物量差异的影响,与生态系统中的高度非线性特征有关。  相似文献   
7.
The Jalovecký Creek catchment, Slovakia (area 22.2 km2, mean elevation 1500 m a.s.l.), is likely the last big valley complex in the Carpathian Mountains, in which the hydrological cycle is still governed by natural processes. Hydrological research is conducted there since the end of the 1980s. The overall mission of the research is to increase the knowledge about the hydrological cycle in the highest part of the Carpathians. The research agenda, briefly introduced in the first part of this article, is focused on water balance, snow accumulation and melt and runoff formation. Recent analysis of precipitation, discharge, snow cover and isotopic data from period 1989–2018 indicates that hydrological cycle has become more dynamic since 2014. Although several indicators suggest that it could be related to the cold part of the year, direct links with snow storage and the contribution of snowmelt water to catchment runoff were not confirmed. The second part of the article is therefore focused on an analysis of daily cycles in streamflow in March to June 1988–2018 to obtain a deeper insight into the snowmelt process. We describe characteristics of the cycles and examine their variability over the study period. The results indicate that less snow at the lowest elevations (800–1150 m a.s.l.) since 2009 could have influenced the cessation of the cycles in June since 2010. The possible role of the decreased amount of snow at the lowest elevations in changes in runoff characteristics is also suggested by an increase in time lags between maximum discharges during the events and maximum air temperatures preceding discharge maxima measured near the catchment outlet (at 750 m a.s.l.) in spring 2018 compared to springs with a similar number of streamflow cycles in the years 1988, 2000 and 2009. Wavelet analysis did not indicate changes in global power spectra in hourly discharge and air temperature data.  相似文献   
8.
Geochemical and isotopic tracers were often used in mixing models to estimate glacier melt contributions to streamflow, whereas the spatio‐temporal variability in the glacier melt tracer signature and its influence on tracer‐based hydrograph separation results received less attention. We present novel tracer data from a high‐elevation catchment (17 km2, glacierized area: 34%) in the Oetztal Alps (Austria) and investigated the spatial, as well as the subdaily to monthly tracer variability of supraglacial meltwater and the temporal tracer variability of winter baseflow to infer groundwater dynamics. The streamflow tracer variability during winter baseflow conditions was small, and the glacier melt tracer variation was higher, especially at the end of the ablation period. We applied a three‐component mixing model with electrical conductivity and oxygen‐18. Hydrograph separation (groundwater, glacier melt, and rain) was performed for 6 single glacier melt‐induced days (i.e., 6 events) during the ablation period 2016 (July to September). Median fractions (±uncertainty) of groundwater, glacier melt, and rain for the events were estimated at 49±2%, 35±11%, and 16±11%, respectively. Minimum and maximum glacier melt fractions at the subdaily scale ranged between 2±5% and 76±11%, respectively. A sensitivity analysis showed that the intraseasonal glacier melt tracer variability had a marked effect on the estimated glacier melt contribution during events with large glacier melt fractions of streamflow. Intra‐daily and spatial variation of the glacier melt tracer signature played a negligible role in applying the mixing model. The results of this study (a) show the necessity to apply a multiple sampling approach in order to characterize the glacier melt end‐member and (b) reveal the importance of groundwater and rainfall–runoff dynamics in catchments with a glacial flow regime.  相似文献   
9.
The elevated levels of primary productivity associated with eastern boundary currents are driven by nutrient- rich waters upwelled from depth, such that these regions are typically characterised by high rates of nitrate-fuelled phytoplankton growth. Production studies from the southern Benguela upwelling system (SBUS) tend to be biased towards the summer upwelling season, yet winter data are required to compute annual budgets and understand seasonal variability. Net primary production (NPP) and nitrate and ammonium uptake were measured concurrently at six stations in the SBUS in early winter. While euphotic zone NPP was highest at the stations nearest to the coast and declined with distance from the shore, a greater proportion was potentially exportable from open-ocean surface waters, as indicated by the higher specific nitrate uptake rates and f-ratios (ratio of nitrate uptake to total nitrogen consumption) at the stations located off the continental shelf. Near the coast, phytoplankton growth was predominantly supported by ammonium despite the high ambient nitrate concentrations. Along with ammonium concentrations as high as 3.6 µmol l–1, this strongly suggests that nitrate uptake in the inshore SBUS, and by extension carbon drawdown, is inhibited by ammonium, at least in winter, although this has also been hypothesised for the summer.  相似文献   
10.
基于16S rRNA高通量基因测序技术,对毛乌素沙地小叶锦鸡儿(Caragana microphylla)、柠条锦鸡儿(Caragana korshinskii)根系微域(即根系、根际土、根区土、灌丛间空白土)间的细菌群落多样性和结构差异性进行表征。本研究对各根系微域间细菌群落的Alpha多样性指数进行了单因素方差分析以及基于OTU水平的PCA分析,探究其在根系微域间Alpha和Beta多样性的层级变化,证实了有关植物根系微域生态位分化的报道,并发现锦鸡儿属植物根系微域间细菌群落的多样性和结构组成随着4个微域类型由外及内呈现出显著的层级差异性(P<0.05)。通过对优势细菌群组的结构组成分析,发现锦鸡儿属植物对特定细菌群组具有显著的向根系内筛选富集的作用(P<0.05)。这种植物通过根系微域对特定细菌群组的逐级筛选富集作用,是导致锦鸡儿属植物灌丛下不同生态位间细菌群落结构和组成发生层级变异的主要原因。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号