首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   257篇
  免费   42篇
  国内免费   78篇
测绘学   1篇
大气科学   21篇
地球物理   25篇
地质学   84篇
海洋学   212篇
综合类   22篇
自然地理   12篇
  2023年   4篇
  2022年   8篇
  2021年   16篇
  2020年   8篇
  2019年   11篇
  2018年   14篇
  2017年   10篇
  2016年   9篇
  2015年   14篇
  2014年   30篇
  2013年   11篇
  2012年   12篇
  2011年   21篇
  2010年   12篇
  2009年   16篇
  2008年   23篇
  2007年   14篇
  2006年   21篇
  2005年   10篇
  2004年   14篇
  2003年   15篇
  2002年   6篇
  2001年   12篇
  2000年   6篇
  1999年   7篇
  1998年   9篇
  1997年   10篇
  1996年   4篇
  1995年   9篇
  1994年   3篇
  1993年   7篇
  1991年   3篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1985年   3篇
  1984年   1篇
排序方式: 共有377条查询结果,搜索用时 390 毫秒
1.
The substructures of offshore wind turbines are subjected to extreme breaking irregular wave forces. The present study is focused on investigating breaking irregular wave forces on a monopile using a computational fluid dynamics (CFD) based numerical model. The breaking irregular wave forces on a monopile mounted on a slope are investigated with a numerical wave tank. The experimental and numerical irregular free surface elevations are compared in the frequency-domain for the different locations in the vicinity of the cylinder. A numerical analysis is performed for different wave steepness cases to understand the influence of wave steepness on the breaking irregular wave loads. The wave height transformation and energy level evolution during the wave shoaling and wave breaking processes is investigated. The higher-frequency components generated during the wave breaking process are observed to play a significant role in initiating the secondary force peaks. The free surface elevation skewness and spectral bandwidth during the wave transformation process are analysed and an investigation is performed to establish a correlation of these parameters with the breaking irregular wave forces. The role of the horizontal wave-induced water particle velocity at the free surface and free surface pressure in determining the breaking wave loads is highlighted. The higher-frequency components in the velocity and pressure spectrum are observed to be significant in influencing the secondary peaks in the breaking wave force spectrum.  相似文献   
2.
In the upper Chesapeake Bay (Maryland, U.S.A.) field surveys were conducted at 18 multiple longshore sand bar sites. The multiple bar systems were found in water depths less than approximately 2 m (mean sea level), and exhibited mild bottom slopes of 0·0052 or less. The number of bars composing each system ranged from four to 17 and the spacing between the crests typically increased in the offshore direction, ranging from 12 to 70 m. Bar height also typically increased with distance offshore and ranged from 0·03 to 0·61 m. A grain size analysis of crest and trough sediment did not reveal any significant differences and the sediment was categorized as ‘fine sand’. A review of the literature data indicated that the Chesapeake Bay multiple bars possessed similar characteristics to those found in Gelding Bay (Baltic Sea); similarities in fetch, wave height and tidal range between the two bays may account for this finding. The surf-scaling parameter indicated that the multiple bar systems were extremely dissipative with regard to wave energy, and wave height appeared to be an important factor in controlling bar spacing and bar height. A multiple wave break point hypothesis was discussed as a possible mechanism for the formation of Chesapeake Bay multiple longshore bars, and limited observational evidence appeared to support such a mechanism.  相似文献   
3.
The effect of ocean wave breaking as a non-Bragg mechanism on backscattering cross-section and modulation transfer functions (MTF) of radar was investigated based on Bragg resonance theory and parametric method. The result showed that the additional effect of wave breaking on backscattering cross-section is not more than 20% except for the small incident angle of VV polarized electromagnetic (e.m.) wave but is significant for HH polarized e.m. wave. Breaking waves lead to increase in the modulus of tilt modulation MTF and the larger the wind speed, the faster the increase. For large incident angle, the modulus of tilt modulation MTF with wave breaking decreases quickly with incident angle for HH polarization and approach to that without wave breaking for VV polarization. The hydrodynamic MTF increases 30%-60% when considering wave breaking and the increase is larger for HH polarization than for VV polarization.  相似文献   
4.
In accordance with the similarity between breaking waves and hydraulic jumps, the expressions for estimating wave decay and wave energy dissipation in the surf zone are derived based on the fundamental equations of fluid mechanics. Using the numerical solution of cnoidal wave theory, the various kinematic properties of waves in the surf zone, including the relative wave crest height, wave energy, and radiation stress are discussed. The values calculated with the method proposed in this paper are in good agreement with the experimental data gained by other researchers. The present expressions can be used in the studies of sediment transport on gently sloping beaches, especially on muddy beaches.  相似文献   
5.
Thewavetransformationandbreakingphenomenainshallowwater¥LiYucheng(1.DalianUniversityofTechnology,Dalian116023,China)Abstract:...  相似文献   
6.
This paper presents a method to statistically predict the magnitude of impact pressure (including extreme values) produced by deep water waves breaking on a circular cylinder representing a column of an ocean structure. Breaking waves defined here are not those whose tops are blown off by the wind but those whose breaking is associated with steepness. The probability density function of wave period associated with breaking waves is derived for a specified wave spectrum, and then converted to the probability density function of impact pressure. Impacts caused by two different breaking conditions are considered; one is the impact associated with waves breaking in close proximity to the column, the other is an impact caused by waves approaching the column after they have broken. As an example of the application of the present method, numerical computations are carried out for a wave spectrum obtained from measured data in the North Atlantic.  相似文献   
7.
Experiments carried out with models of floating production, storage and offloading platforms (FPSOs) showed that the flow of water over the deck edge, onto the deck resembled a suddenly released wall of water rather than a breaking wave. Therefore green water flow onto the deck was simulated using dam breaking theory, but the theory’s shallow-water assumptions may be limiting. In this paper a non-linear dam breaking problem is formulated. Equations of motion in the Lagrangian form are used and the solution is sought as an infinite series in time. Comparisons with the shallow water approximation are carried out.  相似文献   
8.
The effects of the gravity torques acting on the angular momentum of surface gravity waves are calculated theoretically. For short crested waves the gravity torque is caused by the force of gravity on the orbiting fluid particles acting down the slopes of the crests and troughs and in the direction parallel to the crests and troughs. The gravity torque tries to rotate the angular momentum vectors, and thus the waves themselves, counterclockwise in the horizontal plane, as viewed from above, in both hemispheres. The amount of rotation per unit time is computed to be significant assuming reasonable values for the along-crest and trough slopes for waves in a storm area. The gravity torque has a frequency which is double the frequency of the waves. For long crested waves the gravity torque acts in the vertical plane of the orbit and tries to decelerate the particles when they rise and accelerate them when they fall. By disrupting the horizontal cyclostrophic balance of forces on the fluid particles (centrifugal force versus pressure force) the gravity torque accounts qualitatively for the three characteristics of breaking waves: that they break at the surface, that they break at the crest, and that the crest breaks in the direction of wave propagation.  相似文献   
9.
To study ice-induced vibration of a compliant conical structure,a series of model tests were performed from 2004 to 2005.In the tests,the ice sheet before the compliant conical structure was found to fail in two-time breaking.From 2005 to 2006,this type of ice failure was studied through more groups of tests.The tests show that two-time breaking is the typical failure of ice before steep conical structures,and is controlled by other factors at the same time,such as ice speed and the angle of the cone.  相似文献   
10.
A study of sea surface wave propagation and its energy deformation was carried out using field observations and numerical experiments over a region spanning the midshelf of the South Atlantic Bight (SAB) to the Altamaha River Estuary, GA. Wave heights on the shelf region correlate with the wind observations and directional observations show that most of the wave energy is incident from the easterly direction. Comparing midshelf and inner shelf wave heights during a time when there was no wind and hence no wave development led to an estimation of wave energy dissipation due to bottom friction with corresponding wave dissipation factor of 0.07 for the gently sloping continental shelf of the SAB. After interacting with the shoaling region of the Altamaha River, the wave energy within the estuary becomes periodic in time showing wave energy during flood to high water phase of the tide and very little wave energy during ebb to low water. This periodic modulation inside the estuary is a direct result of enhanced depth and current-induced wave breaking that occurs at the ebb shoaling region surrounding the Altamaha River mouth at longitude 81.23°W. Modelling results with STWAVE showed that depth-induced wave breaking is more important during the low water phase of the tide than current-induced wave breaking during the ebb phase of the tide. During the flood to high water phase of the tide, wave energy propagates into the estuary. Measurements of the significant wave height within the estuary showed a maximum wave height difference of 0.4 m between the slack high water (SHW) and slack low water (SLW). In this shallow environment these wave–current interactions lead to an apparent bottom roughness that is increased from typical hydraulic roughness values, leading to an enhanced bottom friction coefficient.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号