首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   7篇
大气科学   9篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
结合安徽省闪电定位监测资料对池州市广电发射台所在地的雷电环境进行了分析,并结合实际情况提出了发射台整体性的防雷装置改进建议,为发射台防雷装置的设计提供了一定的依据和借鉴。近年来实际运行证明该套方案是切实可行的。  相似文献   
2.
利用2018年7月5日ECMWF_ERA5逐小时(空间分辨率0.25×0.25)再分析资料和池州市加密雨量站及常规气象资料,分析了高层干侵入在一次短时极端强降水中的作用。结果表明:在多尺度天气系统相互作用下,中纬度高层干冷空气沿高空急流右侧及高压内部下沉辐散气流向相对低层扩散,在水平经向风引导下向南前倾式输送。高层干侵入导致大气对流有效位能CAPE增加、湿等熵面倾斜、大气斜压性增加、静力稳定度减小和高层辐散加大。在中低层低涡切变动力抬升下,暖湿与干冷大气之间湿位涡得到快速增长,为江淮气旋发生发展提供了有利的环境条件;此时,干侵入在水汽云图上表现为较清晰的"S"型暗区头边界,在雷达带状回波图上表现为其后侧缺口,极端强降水位于缺口南端。干侵入指数DII_p能很好地反映干侵入过程,中高层DII_p正、负中心"偶极对"与MCC生消具有时空一致性,DII_p垂直梯度的增加(减小)对应MCC发展(减弱)。  相似文献   
3.
采用安徽国家基本站逐小时降水及欧洲ERA5再分析资料,统计分析了2011—2019年影响安徽致暴江淮气旋气候概况、雨区、路径及环流场特征。结果表明,影响安徽致暴江淮气旋多发生于湖北、湖南等地,约占同期总气旋数的18.9%,年均2.8次;降水大值中心主要位于大别山南麓至皖南山区西南一带,高海拔山区尤其明显。根据斜旋转T模态主成分客观分析法,将影响安徽致暴江淮气旋主要划分为高压脊型(SP1型)、高空槽型(SP2型)、暖式切变型(SP3型);其中,SP1型致暴天气过程最多,占40%,SP2型次之,占36%,SP3型占20%。高压脊型(SP1型)江淮气旋一般偏南东移,安徽以西有一高压脊,高压脊东侧有显著的经向环流,中高层有明显干侵入过程,低层暖湿舌伸向皖南山区,暖湿不稳定层结的配置有利于皖南山区对流性强降水的产生;高空槽型(SP2型)江淮气旋一般向偏东方向移动,安徽中北部中高层为东北—西南向高空槽,低层表现为冷锋南侵,与南方暖湿气流汇合于安徽长江流域,导致雨区分布于安徽长江一线;暖式切变型(SP3型)江淮气旋一般偏北东移,低涡位于安徽以西,西南强盛的暖湿气流经大别山区向东北方输送,整层均为大湿区,低层有较强的辐合抬升,降水效率高,雨区主要分布于大别山区,属于暖区暴雨或强降水类型。  相似文献   
4.
利用国家基本站、区域站资料,分析了2006—2016年池州市短时强降水时空分布特征,建立3种天气学概念模型,并总结了短时强降水的中尺度系统、相关物理量和雷达回波的一般特征。结果表明:池州市短时强降水主要发生在汛期(5—8月),其中7月最活跃,其次分别是6、8月。强度≥20 mm/h和≥30 mm/h的短时强降水日变化呈现双峰型特征,强度≥50 mm/h的短时强降水则呈现单峰型特征。东至县中南部是短时强降水的易发区域,其次是贵池南部山区和九华山东、西两侧区域。池州市短时强降水天气类型可分为副热带高压边缘型、西北气流型和台风型,其中副热带高压边缘型是短时强降水的易发天气类型。中小尺度天气系统在不同天气类型中的作用存在差异,但相关物理量差异不明显。副热带高压边缘型、台风型强降水过程中雷达反射率因子多表现低质心结构特征,西北气流型呈现高质心结构特征。  相似文献   
5.
基于观测资料的云系分裂现象分析   总被引:2,自引:2,他引:0  
根据中尺度地面站网、多普勒雷达和卫星云图资料,对一次云系分裂现象的成因进行了分析,结果表明:两条雨带之间的弱降水是由于云系分裂所导致的;组合反射率因子反映出北支云系以层状云为主,南支云系以对流云为主;北支云系移向是ENE,南支云系移向是E,使得两支云系逐渐分离;通过低层气压梯度力的估算,北侧为西北风,南侧为东偏南风,大体代表云系底部的移向,结合雷达得到的高低层明显的移向差异,故引起南支云系和北支云系的逐步分开;受气压梯度力和地形阻挡的作用,使得南北云系分开,成为分别独立的云系。  相似文献   
6.
统计2007-2016年池州市暴雨引发的主要灾害及次生灾害,运用冯利华[1]提出的灾级概念模型对其进行分级,结果表明:2007年7月10日和2016年7月3日的暴雨灾害指数均超过了6.00,灾害等级为重灾。前者的短历时强降水特征非常明显,且由于降水发生时段主要在夜间,发生地位于山区,结果导致出现山洪、山体滑坡、泥石流等灾害;后者则是由于持续性的降水造成了城市内涝、多条河流超警戒水位甚至发生溃堤。文章还基于上述原因从致灾因子和承灾体即短时强降水和地形因素两方面重点分析其致灾性,结果表明:凌晨5时前后是池州市暴雨灾害的最强致灾时段,这主要是因为此时段为短时强降水高发时段,一旦发生持续性短时强降水将会造成严重的暴雨灾害;而在空间上池州市东至县、贵池南部山区及九华山区域为暴雨灾害高发区域,其原因是东至县为喇叭口特殊地形,而其他地区多为山区,同时由于池州市位于副高西北侧,汛期西南气流输送比较强盛,通过山区地形的强迫抬升和动力抬升作用容易触发对流,产生强降水过程,造成暴雨灾害。  相似文献   
7.
基于2003-2018年池州冬半年观测资料,采用T-mode主成分客观分析法(TPCA)等方法进行固态降水与环流背景的统计分析。结果表明:池州172个固态降水日中,固态降水的主要月份占比分别是1月的44.8%、2月的27.9%和12月的16.3%;其中雨雪转换、纯雪和冻雨3类占比分别为55.2%、41.3%和3.5%。环流形势可划分为一槽一脊型(Ⅰ型),纬向波动型(Ⅱ型)和两槽一脊型(Ⅲ型),Ⅰ型占比最多,Ⅱ型次之,Ⅲ型较少。Ⅰ~Ⅲ型分别代表北方冷空气从中路、西路和东路南下,池州固态降水过程主要受中路冷空气影响。Ⅰ型气温最低,出现固态降水概率最高,是其它形势3倍以上;Ⅱ型气温最高,出现固态降水概率最低。除Ⅲ型外,纯雪过程中低层温度均较雨雪转换过程低2.0 ℃左右;雨雪转换过程中925 hPa温度与850 hPa基本相同,一般在-4.0~-5.0 ℃之间,而纯雪过程则较850 hPa偏高1.0 ℃左右;雨雪转换过程1000 hPa温度基本在0 ℃附近,纯雪则在0 ℃以下。925 hPa盛行东北风,850 hPa存在气旋性环流,配合700 hPa上12.0 m/s左右急流、水汽通量及水汽通量散度大值中心,有利于池州固态降水的产生。它一般属于大尺度降水,层结稳定,锋区位于700 hPa以下,低层有冷平流,切变线一般位于850~800 hPa之间。  相似文献   
8.
利用自动气象站、多普勒雷达、FY4A、ECMWF模式、NCEP再分析资料,对2020年7月17—19日特大暴雨过程进行分析。结果表明:特大暴雨出现在安徽大别山附近和庐江两地,是中尺度气旋扰动环境下准静止的中尺度对流系统(MCS)以及MCS中准静止的涡旋状单体所产生。特大暴雨在高能量、强不稳定背景下,由中部和东部的中尺度气旋传播所致。中尺度气旋传播过程中单体不断新生、合并增强且移动缓慢,配合急流、辐合、干侵入、垂直环流等因素对组织化的MCS发展演变起到相当作用。低层切变线南侧到华南的西南急流,将水汽输送到安徽并在此有强烈辐合;高空、低空和超低空都存在急流,高低空急流耦合加剧MCS的强烈发展;地面辐合线是前期MCS的触发机制,伴随干冷空气的入侵,加大了大气的斜压性和MCS的对流不稳定;梅雨锋南北两侧都有垂直环流圈,即对流与高空急流之间通过对流加热在高空急流入口处产生热成风调整,维持梅雨锋的发展演变,强的上升下沉运动促进MCS的加强和降水的连续发生;大别山地形抬升和上游狭管效应是两地特大暴雨诱因。  相似文献   
9.
利用高空、地面气象观测资料及 NCEP 再分析资料,对贵州铜仁 2019 年 2 月 17 日(简称“02·17”过程)和 2 月 20 日(简称“02·20”过程)两次冷锋后部的高架雷暴天气进行了对比分析,结果表明:(1)两次过程均受高空槽、中低层切变线及地面冷空气补充加强影响,受 700 hPa西南急流脉动产生风速辐合触发释放不稳定能量。(2)逆温层“上干冷、下暖湿”的温湿层结、850-700 hPa 强垂直风切变及 700耀500 hPa 较大的垂直温度递减率、对流层中低层强比湿平流为两次过程提供了水汽、动力、热力及不稳定条件。(3)两次过程均出现强雷暴并伴有降水发生,但“02·17”过程湿层深厚、云顶温度低、热力不稳定层结更强、水汽辐合高度也较高,所以在午后到傍晚时段出现了雷暴并伴有冰粒或霰,夜间时段由于湿层高度的进一步抬升及低层气温的下降所以产生了雨夹雪或雪,地势高处产生了冻雨; “02·20”过程逆温强度强、干层厚度大、湿层浅薄、云顶温度较高,受冷空气扰动的强度大,所以出现强闪电并伴有弱降水。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号