首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43407篇
  免费   8919篇
  国内免费   10114篇
测绘学   3576篇
大气科学   9036篇
地球物理   10827篇
地质学   21449篇
海洋学   5434篇
天文学   1782篇
综合类   4875篇
自然地理   5461篇
  2024年   63篇
  2023年   649篇
  2022年   2015篇
  2021年   2289篇
  2020年   1961篇
  2019年   1951篇
  2018年   2497篇
  2017年   2189篇
  2016年   2424篇
  2015年   2121篇
  2014年   2605篇
  2013年   2677篇
  2012年   2636篇
  2011年   2731篇
  2010年   2799篇
  2009年   2629篇
  2008年   2438篇
  2007年   2285篇
  2006年   1824篇
  2005年   1708篇
  2004年   1297篇
  2003年   1262篇
  2002年   1199篇
  2001年   1283篇
  2000年   1441篇
  1999年   1966篇
  1998年   1616篇
  1997年   1503篇
  1996年   1437篇
  1995年   1222篇
  1994年   1102篇
  1993年   977篇
  1992年   798篇
  1991年   589篇
  1990年   459篇
  1989年   396篇
  1988年   343篇
  1987年   210篇
  1986年   185篇
  1985年   119篇
  1984年   116篇
  1983年   87篇
  1982年   84篇
  1981年   65篇
  1980年   39篇
  1979年   42篇
  1978年   20篇
  1977年   14篇
  1976年   8篇
  1958年   35篇
排序方式: 共有10000条查询结果,搜索用时 18 毫秒
1.
We introduce the freely available web-based Water in an Agricultural Landscape—NUčice Database (WALNUD) dataset that includes both hydrological and meteorological records at the Nučice experimental catchment (0.53 km2), which is representative of an intensively farmed landscape in the Czech Republic. The Nučice experimental catchment was established in 2011 for the observation of rainfall–runoff processes, soil erosion processes, and water balance of a cultivated landscape. The average altitude is 401 m a.s.l., the mean land slope is 3.9%, and the climate is humid continental (mean annual temperature 7.9°C, annual precipitation 630 mm). The catchment is drained by an artificially straightened stream and consists of three fields covering over 95% of the area which are managed by two different farmers. The typical crops are winter wheat, rapeseed, and alfalfa. The installed equipment includes a standard meteorological station, several rain gauges distributed across the basin, and a flume with an H-type facing that is used to monitor stream discharge, water turbidity, and basic water quality indicators. Additionally, the groundwater level and soil water content at various depths near the stream are recorded. Recently, large-scale soil moisture monitoring efforts have been introduced with the installation of two cosmic-ray neutron sensors for soil moisture monitoring. The datasets consist of observed variables (e.g. measured precipitation, air temperature, stream discharge, and soil moisture) and are available online for public use. The cross-seasonal, open access datasets at this small-scale agricultural catchment will benefit not only hydrologists but also local farmers.  相似文献   
2.
Dissolved pollutants in stormwater are a main contributor to water pollution in urban environments. However, many existing transport models are semi-empirical and only consider one-dimensional flows, which limit their predictive capacity. Combining the shallow water and the advection–diffusion equations, a two-dimensional physically based model is developed for dissolved pollutant transport by adopting the concept of a ‘control layer’. A series of laboratory experiments has been conducted to validate the proposed model, taking into account the effects of buildings and intermittent rainfalls. The predictions are found to be in good agreement with experimental observations, which supports the assumption that the depth of the control layer is constant. Based on the validated model, a parametric study is conducted, focusing on the characteristics of the pollutant distribution and transport rate over the depth. The hyetograph, including the intensity, duration and intermittency, of rainfall event has a significant influence on the pollutant transport rates. The depth of the control layer, rainfall intensity, surface roughness and area length are dominant factors that affect the dissolved pollutant transport. Finally, several perspectives of the new pollutant transport model are discussed. This study contributes to an in-depth understanding of the dissolved pollutant transport processes on impermeable surfaces and urban stormwater management.  相似文献   
3.
The alkali element K is moderately volatile and fluid mobile; thus, it can be influenced by both primary processes (evaporation and recondensation) in the solar nebula and secondary processes (thermal and aqueous alteration) in the parent body. Since these primary and secondary processes would induce different isotopic fractionations, K isotopes could become a potential tracer to distinguish them. Using recently developed methods with improved precision (0.05‰, 95% confidence interval), we systematically measured the K isotopic compositions and major/trace elemental compositions of chondritic components (18 chondrules, 3 CAIs, 2 matrices, and 5 bulks) in the carbonaceous chondrite fall Allende. Among all the components analyzed in this study, CAIs, which formed initially under high‐temperature conditions in the solar nebula and were dominated by nominally K‐free refractory minerals, have the highest K2O content (average 0.53 wt%) and have K isotope compositions most enriched in heavy isotopes (δ41K: ?0.30 to ?0.25‰). Such an observation is consistent with previous petrologic studies that show CAIs in Allende have undergone alkali enrichment during metasomatism. In contrast, chondrules contain lower K2O content (0.003–0.17 wt%) and generally lighter K isotope compositions (δ41K: ?0.87‰ to ?0.24‰). The matrix and bulks are nearly identical in K2O content and K isotope compositions (0.02–0.05 wt%; δ41K: ?0.62 to ? 0.46‰), which are, as expected, right in the middle of CAIs and chondrules. This strongly indicates that most of the chondritic components of Allende suffered aqueous alteration and their K isotopic compositions are the ramification of Allende parent‐body processing instead of primary nebular signatures. Nevertheless, we propose the small K isotope fractionations observed (< 1‰) among Allende components are likely similar to the overall range of K isotopic fractionation that occurred in nebular environment. Furthermore, the K isotope compositions seen in the components of Allende in this study are consistent with MC‐ICP‐MS analyses of the components in ordinary chondrites, which also show an absence of large (10‰) isotope fractionations. This is not expected as evaporation experiments in nebular conditions suggest there should be large K isotopic fractionations. Nevertheless, possible nebular processes such as chondrules back exchanging with ambient gas when they formed could explain this lack of large K isotopic variation.  相似文献   
4.
To investigate the seismic response of a pile group during liquefaction, shaking table tests on a 1/25 scale model of a 2 × 2 pile group were conducted, which were pilot tests of a test project of a scale-model offshore wind turbine with jacket foundation. A large laminar shear box was utilized as the soil container to prepare a liquefiable sandy ground specimen. The pile group model comprising four slender aluminum piles with their pile heads connected by a rigid frame was designed with similitude considerations focusing on soil–pile interaction. The input motions were 2-Hz sinusoids with various acceleration amplitudes. The excess pore water pressure generation indicated that the upper half of the ground specimen reached initial liquefaction under the 50-gal-amplitude excitation, whereas in the 75-gal-amplitude test, almost entire ground was liquefied. Accelerations in soil, on the movable frames composing the laminar boundary of the shear box, and along the pile showed limited difference at the same elevation before liquefaction. After liquefaction, the soil and the movable-frame accelerations that represented the ground response considerably reduced, whereas both the movable frames and the piles exhibited high-frequency jitters other than 2-Hz sinusoid, and meantime, remarkable phase difference between the responses of the pile group and the ground was observed, all probably due to the substantial degradation of liquefied soil. Axial strains along the pile implied its double-curvature bending behavior, and the accordingly calculated moment declined significantly after liquefaction. These observations demonstrated the interaction between soil and piles during liquefaction.  相似文献   
5.
Salinity is a vital factor that regulates leaf photosynthesis and growth of mangroves, and it frequently undergoes large seasonal and daily fluctuations creating a range of environments – oligohaline to hyperhaline. Here, we examined the hypotheses that mangroves benefit opportunistically from low salinity resulting from daily fluctuations and as such, mangroves under daily fluctuating salinity (FS) grow better than those under constant salinity (CS) conditions. We compared growth, salt accumulation, gas exchange, and chlorophyll fluorescence of leaves of mangrove Bruguiera gymnorhiza seedlings growing in freshwater (FW), CS (15 practical salinity units, PSU), and daily FS (0–30 PSU, average of 4.8 PSU) conditions. The traits of FS-treated leaves were measured in seedlings under 15 PSU. FS-treated seedlings had greater leaf biomass than those in other treatment groups. Moreover, leaf photosynthetic rate, capacity to regulate photoelectron uptake/transfer, and leaf succulence were significantly higher in FS than in CS treatment. However, leaf water-use efficiency showed the opposite trend. In addition to higher concentrations of Na+ and Cl, FS-treated leaves accumulated more Ca2+ and K+. We concluded that daily FS can enhance water absorption, photosynthesis, and growth of leaves, as well as alter plant biomass allocation patterns, thereby positively affecting B. gymnorhiza. Mangroves that experience daily FS may increase their adaptability by reducing salt build-up and water deficits when their roots are temporally subjected to low salinity or FW and by absorbing sufficient amounts of Na+ and Cl for osmotic adjustment when their roots are subsequently exposed to saline water.  相似文献   
6.
Time series of hydrogen and oxygen stable isotope ratios (δ2H and δ18O) in rivers can be used to quantify groundwater contributions to streamflow, and timescales of catchment storage. However, these isotope hydrology techniques rely on distinct spatial or temporal patterns of δ2H and δ18O within the hydrologic cycle. In New Zealand, lack of understanding of spatial and temporal patterns of δ2H and δ18O of river water hinders development of regional and national-scale hydrological models. We measured δ2H and δ18O monthly, together with river flow rates at 58 locations across New Zealand over a two-year period. Results show: (a) general patterns of decreasing δ2H and δ18O with increasing latitude were altered by New Zealand's major mountain ranges; δ2H and δ18O were distinctly lower in rivers fed from higher elevation catchments, and in eastern rain-shadow areas of both islands; (b) river water δ2H and δ18O values were partly controlled by local catchment characteristics (catchment slope, PET, catchment elevation, and upstream lake area) that influence evaporation processes; (c) regional differences in evaporation caused the slope of the river water line (i.e., the relationship between δ2H and δ18O in river water) for the (warmer) North Island to be lower than that of the (cooler, mountain-dominated) South Island; (d) δ2H seasonal offsets (i.e., the difference between seasonal peak and mean values) for individual sites ranged from 0.50‰ to 5.07‰. Peak values of δ18O and δ2H were in late summer, but values peaked 1 month later at the South Island sites, likely due to greater snow-melt contributions to streamflow. Strong spatial differences in river water δ2H and δ18O caused by orographic rainfall effects and evaporation may inform studies of water mixing across landscapes. Generally distinct seasonal isotope cycles, despite the large catchment sizes of rivers studied, are encouraging for transit time analysis applications.  相似文献   
7.
以某高速铁路线上一座连续梁桥为例,运用模糊综合评判法,结合基于位移的支座损伤分析和截面曲率的桥墩损伤分析,以全概率理论地震损失模型为基础,提出了基于模糊理论的桥梁系统地震经济风险评估方法。结果表明:综合考虑桥梁系统的模糊地震经济风险分析方法能更全面地计算出连续梁桥在地震作用下的经济损失,仅以桥墩构件代表全桥所得地震经济损失误差较大。基于模糊理论的年预期损失风险框架方法通过结构抗震性能的概率特征可对高速铁路连续梁桥的地震直接经济风险进行全面评估,为该类桥梁的抗震设计、维修加固和灾后重建等方案做出合理评价。  相似文献   
8.
光度观测是地基观测空间目标的主要手段之一,利用光度信息能够估计空间目标的相关特征信息。为了更好地了解空间目标的旋转状态,选取具有代表性的猎鹰九号火箭末级作为研究对象,由其光变信息研究旋转状态。首先利用云南天文台1.2 m光学望远镜获取猎鹰九号火箭末级的光度数据,再对目标星等进行斜距归一化,得到目标光变信息并分析目标星等随时间变化的曲线,估计大致的旋转周期,再由相位离散最小化方法计算会合周期。根据太阳、目标和测站之间的位置关系、惯性主轴指向、旋转轴指向、初始相位等因素,采用姿态旋转矩阵计算理论星等,利用最小二乘原则确定惯性主轴方向及初相角度、旋转轴指向。最后给出了猎鹰九号火箭末级的旋转周期、会合周期以及旋转轴指向等参数,为后续开展其他空间目标光度信息研究提供参考。  相似文献   
9.
广西土壤有机质空间变异特征及其影响因素研究   总被引:2,自引:0,他引:2  
基于广西第二次土壤普查的270个土壤剖面资料,结合1∶50万数字化土壤类型图、土地利用类型图和气象监测数据等资料,利用地统计学和逐步回归分析等方法对广西表层土壤有机质空间变异特征及其影响因素进行了探究。结果表明:广西表层土壤有机质平均含量为3.11±2.19%,变异系数为70.72%,空间分布呈北高南低的趋势。广西表层土壤有机质空间分布受到自然和人为因素的共同影响,土壤类型、成土母质、海拔、土地利用、气候和坡度6个环境因子对全区土壤有机质含量变异的综合解释能力为47.9%。其中,土壤类型是最重要的影响因素,能独立解释其变异的36.0%,海拔和成土母质分别能独立解释28.5%和15.8%。气温对广西土壤有机质空间分布的影响比降水量更加显著,从而造成了广西土壤有机质整体呈南低北高的趋势。同时,土壤有机质对气温的敏感性在一定程度上受到降雨量的制约。此外,研究区农业耕作管理等因素对土壤有机质的影响也不容忽视。  相似文献   
10.
海南省连片贫困地区农户致贫风险分析   总被引:4,自引:1,他引:3  
农村贫困与减贫是世界性难题,也是中国各级政府高度重视并着力解决的重大民生问题。基于农户及致贫风险的文献梳理,从区位、社会和劳动力3个要素维度构建了农户致贫风险分析的二元Logistic回归模型。采用484户农户问卷调查数据,分析了海南省连片贫困地区农户的致贫风险,提出有效减贫和持续发展对策。研究发现:① 海南连片贫困地区生态环境良好但贫困发生率较高,家庭劳动力较充裕但受教育水平较低,子女教育支出负担重,因病因残致贫比例较高,女性务工人口较多,农户自身脱贫致富的发展动力不足。② 海拔高度200 m以下、男性户主、拥有残疾或患病成员、务工人口比例低、女性务工人员占比高、以及单位劳动力供养学生数高的农户具有更大的致贫风险。③ 研究未发现女性户主、少数民族、低受教育水平户主、大型规模家庭有更高的致贫风险,女性成员比例、抚养比等因素对农户贫困影响较小。激发农户内生动力、大力发展特色化和规模化农业、增加农户就业机会、加强针对农民工、女性务工人员和病残群体的社会保障等减贫政策制定实施是实现脱贫攻坚目标的重要途径。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号