首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2514篇
  免费   791篇
  国内免费   1162篇
测绘学   28篇
大气科学   44篇
地球物理   204篇
地质学   3273篇
海洋学   439篇
天文学   9篇
综合类   193篇
自然地理   277篇
  2024年   12篇
  2023年   69篇
  2022年   106篇
  2021年   119篇
  2020年   102篇
  2019年   119篇
  2018年   103篇
  2017年   94篇
  2016年   102篇
  2015年   117篇
  2014年   171篇
  2013年   129篇
  2012年   167篇
  2011年   164篇
  2010年   155篇
  2009年   154篇
  2008年   143篇
  2007年   162篇
  2006年   169篇
  2005年   156篇
  2004年   129篇
  2003年   127篇
  2002年   137篇
  2001年   178篇
  2000年   111篇
  1999年   99篇
  1998年   120篇
  1997年   134篇
  1996年   128篇
  1995年   106篇
  1994年   108篇
  1993年   110篇
  1992年   101篇
  1991年   98篇
  1990年   88篇
  1989年   82篇
  1988年   18篇
  1987年   25篇
  1986年   10篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1982年   2篇
  1981年   7篇
  1980年   2篇
  1979年   3篇
  1977年   2篇
  1955年   3篇
  1938年   2篇
  1930年   6篇
排序方式: 共有4467条查询结果,搜索用时 15 毫秒
1.
以FeCl3?6H2O、NiCl2?6H2O、MgCl2?6H2O为原料,以NaOH为沉淀剂采用水热法合成了镁镍铁水滑石 (MgNiFe-LDH),通过X射线衍射 (XRD)、傅里叶变换红外光谱 (FTIR) 和扫描电镜 (SEM) 分析了MgNiFe-LDH结构及形貌,探讨了不同陈化时间和水热温度对MgNiFe-LDH合成的影响。将制得的MgNiFe-LDH添加至聚丙烯 (PP) 中,制备MgNiFe-LDH/PP复合材料,通过对材料的加速老化测其力学性能,研究了添加MgNiFe-LDH前后材料力学性能的差异。研究结果表明,当Mg2+:Ni2+:Fe3+=2:1:1,反应温度为140℃、陈化时间为24 h时,合成的MgNiFe-LDH为片状,形貌较为规整,颗粒粒径约为2μm;经加速老化后,填充MgNiFe-LDH 复合材料的抗老化性能优于纯PP,当MgNiFe-LDH的填充量为6 wt% 复合材料拉伸强度不变,可明显提高PP的抗老化性能。  相似文献   
2.
季节性缺氧导致夏季沉积物内源磷强烈释放,加剧水体富营养化,是我国西南地区深水湖泊(水库)面临的重要挑战.有效增加夏季缺氧期深水沉积物-水界面的含氧量,是减少内源磷释放的关键.现有的深水增氧技术由于缺乏对沉积物-水界面增氧的针对性,因此治理效果有限.近年来,纳米气泡已被证实具有的稳定性好、氧传质速率高和环境风险低等优点,为新型深水增氧技术研发提供了巨大潜力.本文以天然矿物材料白云母、绢云母、硅藻土和沸石为基底,负载纳米气泡,研发纳米气泡改性矿物颗粒技术,开展湖泊沉积物-水界面增氧模拟实验研究,运用平面光电极技术评估其界面增氧效果.结果表明,纳米气泡改性矿物颗粒对沉积物-水界面具有比较明显的增氧效果.其中,改性白云母、绢云母和沸石的界面持续增氧时间可达7天以上,增氧后的界面最大溶解氧(DO)浓度达4.40 mg/L,而改性硅藻土不具有增氧能力.其次,矿物粒度对改性颗粒的增氧效果有一定影响:粒度越细,界面的最大增氧浓度越高,且持续增氧时间越长.纳米气泡改性矿物颗粒技术有望成为夏季缺氧期深水沉积物-水界面精准增氧和内源污染控制的有效技术手段.  相似文献   
3.
戴德求  包海梅  刘爽  尹锋 《岩石学报》2020,36(6):1850-1856
富Al球粒是原始球粒陨石中一种矿物岩石学特征介于富钙铝包体(CAIs)和镁铁质硅酸盐球粒之间的特殊集合体,所以常常认为富Al球粒在认识CAIs和镁铁质硅酸盐球粒形成演化过程中的相互联系具有特殊意义。然而,对富Al球粒的初始物质组成以及形成演化过程一直存在较多争议,而氧同位素组成研究能够对球粒演化和早期星云环境等提供重要的信息。在本文中我们报导了来自Kainsaz(1937年降落于俄罗斯,CO3型)碳质球粒陨石中的2个富Al球粒(编号K1-CH1和K2-CH2)的矿物岩石学和氧同位素组成特征。K1-CH1的矿物组成主要为橄榄石、低钙辉石和富钙长石,K2-CH2为橄榄石和富钙长石。2个球粒中的矿物均具有贫~(16)O同位素组成特征。K1-CH1中矿物的△~(17)O组成基本上位于2个区间:-11.1‰~-8.7‰和-3.9‰~0.4‰;而K2-CH2的△~(17)O介于-6.6‰~-0.6‰之间,且具有从中部至边部升高的趋势。矿物岩石学和氧同位素特征表明,这2个富Al球粒的初始物质组成为富CAIs和镁铁质硅酸盐。在球粒熔融结晶过程中,与贫~(16)O同位素组成(△~(17)O:-8.7‰~-7.8‰)的星云发生了氧同位素交换。球粒形成后,发生迁移进入陨石母体,在相对更贫~(16)O同位素组成(△~(17)O:-0.6‰~0.4‰)的母体中(流体参与)发生变质作用,并再次发生了氧同位素交换。  相似文献   
4.
印度-亚洲大陆碰撞之后的新特提斯洋板片的断离过程及其产生的岩浆作用一直是青藏高原南部地质研究中受到广泛关注但存在极大争议的问题.分析了青藏高原南部拉萨地块上新特提斯洋板片断离存在的问题,总结了目前用于限制板片断离过程的岩石学方法.对拉萨地块南部典型地区早新生代镁铁质岩石开展了详细的地质年代学、主微量元素和Sr-Nd-Hf同位素地球化学分析,厘定了~57 Ma和~50 Ma与新特提斯洋板片断离过程密切相关的两套岩石.~57 Ma的镁铁质岩石显示出高的Zr/Y和Ti/Y比值,不同于拉萨地块南部广泛分布的岛弧岩浆地球化学特征,表明它们形成于板内伸展背景下,很可能代表了新特提斯板片断离的开始.~50 Ma的镁铁质岩石为富闪深成岩,反映了印度-亚洲大陆碰撞后南拉萨地块岩石圈中的富水环境,暗示大洋板片断离后仍然持续释放流体至上覆岩石圈地幔中.结合拉萨地块上已有的镁铁质岩石的年代学和地球化学数据,重建了新特提斯洋在印度-亚洲大陆碰撞之后从初始撕裂至板片完全断离的全过程,即新特提斯板片在~57 Ma开始发生初始撕裂,随后以高角度俯冲并与印度大陆岩石圈脱离,导致中拉萨和南拉萨地块同时出现广泛的镁铁质岩浆作用,在~50 Ma大洋板片完全断离.拉萨地块内部岩石圈地幔地球化学组成存在极大的不均一性,中拉萨地块和南拉萨地块东部的局部地区存在古老的岩石圈物质组成,而南拉萨地块中部主要为亏损的岩石圈.拉萨地块内局部古老富集岩石圈可能受到新特提斯洋板片断离后深部地幔物质上涌的影响转变为新生的亏损岩石圈,这一过程很可能促进了拉萨地块的中酸性岩浆大爆发作用和大陆地壳生长.   相似文献   
5.
硫氧同位素示踪污染物来源在济南岩溶水中的应用   总被引:1,自引:0,他引:1  
近年来,济南岩溶水硫酸盐浓度逐年升高,为了对硫酸盐污染区域实施有效的防治措施,保障饮用水安全,识别硫酸盐的污染来源极其重要。在系统分析研究区水文地质条件的基础上,根据实际的采样测试数据,采用硫、氧(S、O)双同位素示踪技术,分析识别了济南趵突泉泉域硫酸盐的主要污染来源,并通过IsoSource质量守恒模型,估算了硫酸盐各污染来源的贡献率。结果表明: 泉域内硫酸盐主要污染来源有大气沉降、污水和土壤; 大气沉降来源贡献率最大,均值达到53.9%; 其次是污水来源,均值为31%; 土壤来源贡献率最小,均值为15.1%。该研究为北方岩溶区地下水硫酸盐来源的定量研究提供了一种新方法,为济南趵突泉泉域硫酸盐污染防治提供了科学依据。  相似文献   
6.
观察加味杞菊地黄汤联合氢氯噻嗪治疗痰湿壅盛型高血压病的临床疗效。方法:选取我院收治的76 例痰湿壅盛型高血压病患者为研究对象,并采用随机数字表法将患者分为治疗组和对照组,每组各38 例。对照组采用氢氯噻嗪治疗,治疗组在对照组基础上加用加味杞菊地黄汤治疗,比较2组临床疗效、治疗前后血压以及生活质量(SF-36)评分情况。结果:总有效率治疗组为94.74%(36/38),明显高于对照组的76.32%(29/38),差异有统计学意义(P<0.05);治疗后治疗组的收缩压(SBP)与舒张压(DBP)水平明显低于对照组,SF-36各项指标评分均高于对照组,差异均有统计学意义(P<0.05)。结论:加味杞菊地黄汤联合氢氯噻嗪治疗痰湿壅盛型高血压病,能有效提高患者的生活质量,并改善其血压水平,具有显著的临床疗效。  相似文献   
7.
东天山造山带的图拉尔根镁铁-超镁铁杂岩体为一个早古生代长期活动的幔源岩浆通道,大型铜镍钴硫化物矿体赋存于Ⅰ号超镁铁质岩体的顶部,不同类型岩石中辉石矿物的流体挥发份化学组成以H2O为主(平均91%,5400.4mm3/g),其次为H2(2.0%)、H2S(2.3%)和CO2(2.1%);赋矿角闪橄榄岩中CO2和H2S含量最高,辉长岩中流体挥发份含量低于辉石橄榄岩和橄榄辉石岩等岩浆早期结晶的岩石。CO2和CH4δ13C值位于地壳与甲烷氧化的范围内,甲烷同系物的碳同位素组成具有正序分布模式,部分样品(TLG512)释出的CH4和C2H6具有较重的δ13C值和反序分布特征。表明I号岩体不同类型岩石可能是不同期次岩浆活动的产物,成矿岩浆具有富H2O和H2S的特征,可能起源于被流体交代的亏损地幔源区,混染壳源组分可能为俯冲板片来源蚀变沉积有机质组分。  相似文献   
8.
胶东地区广泛发育一系列晚侏罗世岩浆作用产生的埃达克质岩,其成因机制及构造背景研究为揭示胶东地区中生代构造演化提供了重要证据.选取出露于胶东苏鲁地区的范家庄花岗岩进行锆石U-Pb年龄、全岩主微量元素和Sr-Nd-Pb同位素组成分析,探讨了岩石成因及成岩构造背景.锆石U-Pb年龄结果表明范家庄花岗岩侵位于晚侏罗世(161±2 Ma).岩石主微量数据具有富硅(SiO2=68.94%~71.00%)、高铝(Al2O3>15.17%)、低镁(MgO=0.32%~0.41%);高Sr、低Y、Yb含量以及高(La/Yb)N(>38.59)比值的特点,同位素测试结果显示相对高的(87Sr/86Sr)i比值(0.709 28~0.711 41)、相对较低的εNd(t)值(-20.5~-14.1)和高放射性Pb同位素组成(206Pb/204Pb)t=16.853~17.207,(207Pb/204Pb)t=15.436~15.495,(208Pb/204Pb)t=37.340~37.629.综合分析认为,范家庄岩体属于低镁埃达克质岩,产于增厚下地壳部分熔融,源区以扬子板块下地壳组分为主,混合有华北板块下地壳成分.晚侏罗世伊泽奈奇板块俯冲形成的弧后拉张环境诱发重力不稳定或者岩石圈伸展造成加厚的造山带垮塌,软流圈上涌的导致加厚地壳部分熔融可能是形成胶东范家庄低镁埃达克岩的地球动力学背景.   相似文献   
9.
雄村铜(金)矿区位于西藏冈底斯成矿带中段南缘,由Ⅰ、Ⅱ、Ⅲ号矿体和多个矿化体组成。本文以Ⅰ、Ⅱ号矿体钾硅酸盐化蚀变带内的热液黑云母为研究对象,采用光薄片镜下鉴定、电子探针等分析方法,系统研究了热液黑云母的产状和成分特征。结果显示,雄村矿区Ⅰ号矿体黑云母类型主要为金云母和镁质黑云母;Ⅱ号矿体黑云母类型为镁质黑云母。两个矿体黑云母都具有低Ti(TiO_2 3%)、高Al(Al_2O_315%)的特点,且具有较高的MgO含量,Mg/Fe0.5,K/Na10,显示了与矿化良好的相关性。Ⅰ号矿体热液黑云母平均结晶温度470℃,氧逸度位于镍-氧化镍缓冲剂与磁铁矿-钛铁矿缓冲剂之间(NNO—HM);Ⅱ号矿体热液黑云母平均结晶温度234℃,氧逸度位于镍-氧化镍缓冲剂与铁橄榄石-石英-磁铁矿缓冲剂之间(NNO—FQM),说明Ⅰ号矿体形成于较高温、高氧逸度的热液系统,Ⅱ号矿体形成于相对较低温、低氧逸度的热液系统。此外,Ⅰ号矿体热液黑云母Ⅳ(F)值介于0.61~2.72之间,平均值1.26,Ⅳ(Cl)值介于-5.49~-4.53之间,平均值-5.03,Ⅳ(F/Cl)值介于5.63~7.89之间,平均值6.29;Ⅱ号矿体热液黑云母Ⅳ(F)值介于1.83~3.32之间,平均值2.66,Ⅳ(Cl)值介于-5.64~-4.89之间,平均值-5.31,Ⅳ(F/Cl)值介于7.14~8.68之间,平均值7.97,说明Ⅰ、Ⅱ号矿体都形成于富Cl的热液系统,且Ⅱ号矿体热液较Ⅰ号矿体更富Cl,贫F。富Cl流体易萃取流体中的Cu和Au等金属元素并以Cl的络合物形式运移,在沿构造裂隙向上运移的过程中,物理化学条件发生改变,使得流体中金属元素络合物溶解度降低,促使硫化物沉淀成矿。  相似文献   
10.
为准确探究聊城市城郊浅层地下水硝酸盐污染来源,通过分析聊城市城郊区域25个监测点地下水硝酸盐含量,运用氮、氧双同位素追溯地下水硝酸盐污染来源,运用物质平衡混合模型计算各种源的贡献率。结果表明:(1)聊城市城郊的地下水硝酸盐含量介于3.96~38.88mg/L,52%的监测点硝酸盐浓度超过《生活饮用水卫生标准》中Ⅲ类水20mg/L的上限值;(2)聊城市城郊地下水中δ~(15)N-NO_3~-介于-11.3‰~3.9‰之间,δ~(18)O值介于-5.2‰~25.8‰之间,表明地下水硝酸盐污染与农业施肥密切相关,其主要来源为化肥中的NH_4~+和NO_3~-,其次为土壤中N的矿化作用;(3)通过物质平衡混合模型计算,化肥中的NH_4~+对硝酸盐污染的贡献率为82%,化肥中的NO_3~-贡献率为12%,土壤中N矿化作用贡献率为5%;(4)建议加强区域的的化肥施用管理和市政自来水管道建设,区域居民选择饮用市政供水。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号