首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   8篇
  国内免费   19篇
地球物理   15篇
地质学   113篇
海洋学   11篇
综合类   4篇
自然地理   4篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2019年   3篇
  2017年   3篇
  2016年   6篇
  2015年   7篇
  2014年   10篇
  2013年   7篇
  2012年   1篇
  2011年   5篇
  2010年   4篇
  2009年   13篇
  2008年   11篇
  2007年   6篇
  2006年   14篇
  2005年   8篇
  2004年   5篇
  2003年   7篇
  2002年   5篇
  2001年   3篇
  2000年   1篇
  1999年   2篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   3篇
  1993年   1篇
  1992年   5篇
  1991年   1篇
  1990年   2篇
排序方式: 共有147条查询结果,搜索用时 18 毫秒
1.
《地学前缘(英文版)》2019,10(2):769-785
The Weishan REE deposit is located at the eastern part of North China Craton (NCC), western Shandong Province. The REE-bearing carbonatite occur as veins associated with aegirine syenite. LA-ICP-MS bastnaesite Th-Pb ages (129 Ma) of the Weishan carbonatite show that the carbonatite formed contemporary with the aegirine syenite. Based on the petrographic and geochemical characteristics of calcite, the REE-bearing carbonatite mainly consists of Generation-1 igneous calcite (G-1 calcite) with a small amount of Generation-2 hydrothermal calcite (G-2 calcite). Furthermore, the Weishan apatite is characterized by high Sr, LREE and low Y contents, and the carbonatite is rich in Sr, Ba and LREE contents. The δ13CV-PDB (−6.5‰ to −7.9‰) and δ13OV-SMOW (8.48‰–9.67‰) values are similar to those of primary, mantle-derived carbonatites. The above research supports that the carbonatite of the Weishan REE deposit is igneous carbonatite. Besides, the high Sr/Y, Th/U, Sr and Ba of the apatite indicate that the magma source of the Weishan REE deposit was enriched lithospheric mantle, which have suffered the fluid metasomatism. Taken together with the Mesozoic tectono-magmatic activities, the NW and NWW subduction of Izanagi plate along with lithosphere delamination and thinning of the North China plate support the formation of the Weishan REE deposit. Accordingly, the mineralization model of the Weishan REE deposit was concluded: The spatial-temporal relationships coupled with rare and trace element characteristics for both carbonatite and syenite suggest that the carbonatite melt was separated from the CO2-rich silicate melt by liquid immiscibility. The G-1 calcites were crystallized from the carbonatite melt, which made the residual melt rich in rare earth elements. Due to the common origin of G-1 and G-2 calcites, the REE-rich magmatic hydrothermal was subsequently separated from the melt. After that, large numbers of rare earth minerals were produced from the magmatic hydrothermal stage.  相似文献   
2.
Cosmogenic 3He can be used to date a wide range of mineral phases because it is produced from all target elements and can be readily measured above atmospheric contamination. Calcite is a particularly attractive target mineral due to its natural abundance, large crystal size (>1 mm), and low He closure temperature (<70 °C), which limit non-cosmogenic 3He components (Copeland et al., 2007). However, several recent studies have shown that some calcite may not be retentive to helium, even under surface temperatures (Cros et al., 2014; Copeland et al., 2007). This study thus explores 3He retention and production in natural calcite samples at four different sites. Samples from two high elevation sites appear retentive to 3He over 10 kyr timescales, whereas two additional sites clearly suffer from diffusive loss of 3He. Step-degassing experiments suggest that diffusion in calcite is controlled by multiple diffusion domains, with an apparent activation energy of 25–27 kcal mol−1. Although minor 3He loss is expected from the smallest diffusion domains, the observed kinetics cannot explain the poor retention at all sites. We thus propose that opaque (non-transparent) calcite may be more retentive due to the presence of imperfections in the crystal lattice. We conclude that 3He dating of calcite shows promise in some settings. However, because retention depends on crystallographic variability it must be evaluated on a case-by-case basis until robust criteria for retention can be identified.  相似文献   
3.
A low-angle extensional fault system affecting the non metamorphic rocks of the carbonate dominated Tuscan succession is exposed in the Lima valley (Northern Apennines, Italy). This fault system affects the right-side-up limb of a kilometric-scale recumbent isoclinal anticline and is, in turn, affected by superimposed folding and late-tectonic high-angle extensional faulting.The architecture of the low-angle fault system has been investigated through detailed structural mapping and damage zone characterization. Pressure-depth conditions and paleofluid evolution of the fault system have been studied through microstructural, mineralogical, petrographic, fluid inclusion and stable isotope analyses. Our results show that the low-angle fault system was active during exhumation of the Tuscan succession at about 180°C and 5 km depth, with the involvement of low-salinity fluids. Within this temperature - depth framework, the fault zone architecture shows important differences related to the different lithologies involved in the fault system and to the role played by the fluids during deformation. In places, footwall overpressuring influenced active deformation mechanisms and favored shear strain localization.Our observations indicate that extensional structures affected the central sector of the Northern Apennines thrust wedge during the orogenic contractional history, modifying the fluid circulation through the upper crust and influencing its mechanical behavior.  相似文献   
4.
The Flemish Pass Basin is a deep-water basin located offshore on the continental passive margin of the Grand Banks, eastern Newfoundland, which is currently a hydrocarbon exploration target. The current study investigates the petrographic characteristics and origin of carbonate cements in the Ti-3 Member, a primary clastic reservoir interval of the Bodhrán Formation (Upper Jurassic) in the Flemish Pass Basin.The Ti-3 sandstones with average Q86.0F3.1R10.9 contain various diagenetic minerals, including calcite, pyrite, quartz overgrowth, dolomite and siderite. Based on the volume of calcite cement, the investigated sandstones can be classified into (1) calcite-cemented intervals (>20% calcite), and (2) poorly calcite-cemented intervals (porous). Petrographic analysis shows that the dominant cement is intergranular poikilotopic (300–500 μm) calcite, which stared to form extensively at early diagenesis. The precipitation of calcite occured after feldspar leaching and was followed by corrosion of quartz grains. Intergranular calcite cement hosts all-liquid inclusions mainly in the crystal core, but rare primary two-phase (liquid and vapor) fluid inclusions in the rims ((with mean homogenization temperature (Th) of 70.2 ± 4.9 °C and salinity estimates of 8.8 ± 1.2 eq. wt.% NaCl). The mean δ18O and δ13C isotopic compositions of the intergranular calcite are −8.3 ± 1.2‰, VPDB and −3.0 ± 1.3‰, VPDB, respectively; whereas, fracture-filling calcite has more depleted δ18O but similar δ13C values. The shale normalized rare earth element (REESN) patterns of calcite are generally parallel and exhibit slightly negative Ce anomalies and positive Eu anomalies. Fluid-inclusion gas ratios (CO2/CH4 and N2/Ar) of calcite cement further confirms that diagenetic fluids originated from modified seawater. Combined evidence from petrographic, microthermometric and geochemical analyses suggest that (1) the intergranular calcite cement precipitated from diagenetic fluids of mixed marine and meteoric (riverine) waters in suboxic conditions; (2)the cement was sourced from the oxidation of organic matters and the dissolution of biogenic marine carbonates within sandstone beds or adjacent silty mudstones; and (3) the late phases of the intergranular and fracture-filling calcite cements were deposited from hot circulated basinal fluids.Calcite cementation acts as a main controlling factor on the reservoir quality in the Flemish Pass reservoir sandstones. Over 75% of initial porosity was lost due to the early calcite cementation. The development of secondary porosity (mostly enlarged, moldic pores) and throats by later calcite dissolution due to maturation of organic matters (e.g., hydrocarbon and coals), was the key process in improving the reservoir quality.  相似文献   
5.
Calcite veins and cements occur widely in Carboniferous and Permian reservoirs of the Hongche fault zone, northwestern Junggar Basin in northwest China. The calcites were investigated by fluid inclusion and trace-element analyses, providing an improved understanding of the petroleum migration history. It is indicated that the Hongche fault behaved as a migration pathway before the Early Cretaceous, allowing two oil charges to migrate into the hanging-wall, fault-core and footwall reservoirs across the fault. Since the Late Cretaceous, the Hongche fault has been sealed. As a consequence, meteoric water flowed down only into the hanging-wall and fault-core reservoirs. The meteoric-water incursion is likely an important cause for degradation of reservoir oils. In contrast, the footwall reservoirs received gas charge (the third hydrocarbon event) following the Late Cretaceous. This helps explain the distribution of petroleum across the fault. This study provides an example of how a fault may evolve as pathway and seal over time, and how reservoir diagenetic minerals can provide clues to complex petroleum migration histories.  相似文献   
6.
方解石是若尔盖铀矿田与成矿最为密切的脉石矿物之一。方解石的REE地球化学特征研究表明,产于地层中的方解石、矿区中的方解石和含矿方解石具有明显不同的稀土元素组成特征,分别具有轻稀土富集右倾型、重稀土富集左倾型和相对平坦型的3种稀土配分模式。其中产于地层中的方解石明显继承了地层中岩石的稀土元素特征,而含矿方解石表现出与矿石稀土元素相似的特征。碳氧同位素显示地层中的方解石为海洋沉积碳酸盐岩的碳氧同位素组成特征;矿区方解石脉、含矿方解石脉的碳同位素组成明显表现为地幔来源的特点;而矿区方解石脉的氧同位素组成具明显的深部来源特征,含矿方解石脉的氧同位素组成表明在成矿过程中有大气降水的混入。若尔盖铀矿田的方解石主要为热液成因,其矿床成因类型属于典型的热液矿床,成矿流体主要来源于地幔。  相似文献   
7.
Biominerals are natural composite materials comprising organic and inorganic components. Detailed knowledge of the nature and distribution of both components is a crucial requirement in order to advance our understanding of biomineral formation, their material properties and preservation potential as well as the interpretation of environmental data. Detailed chemical data are essential for our understanding of the nature and distribution of such components. Micro-XANES mapping at the sulphur K-edge reveals that, in the brachiopod Terebratulina retusa, the sulphate concentration is higher in the outer (primary) layer than in the calcite fibres of the secondary layer. This is co-incident with a higher magnesium concentration. In contrast, the sheaths surrounding the calcite fibres contain sulphur as thiol, confirming the presence of protein while, the sulphur within the fibres themselves, occurs as sulphate. Micro-XANES analysis of the insoluble organic extract from T. retusa indicates the presence of organic sulphate while Micro-Raman spectroscopy confirms that structurally substituted sulphate (SSS) is also present although semi-quantitative Raman spectroscopy carried out in this spectral region (wavenumbers 900–1200) indicates that the sulphate present is at the threshold of detection by Raman spectroscopy. The distribution of phosphorus in the shell of T. retusa correlates well with that of protein indicating the presence of phosphorylated proteins in the periostracum, the sheaths surrounding the calcite fibres and the interface between the primary and secondary layer.  相似文献   
8.
Scanning electron microscopy revealed micron-sized globular and coccoid objects, associated with filaments and mucus-like patches in antitaxial fibrous calcite veins from Oppaminda Creek, Northern Flinders Ranges, South Australia. Chemically the objects only differ from their calcite (CaCO3) matrix by a higher sulphur content. The ∼585 Ma veins formed at about 3–6 km below the surface. Fluid inclusions indicate a temperature of formation of about 60–80°C, and not exceeding 100°C. A non-biogenic origin of the objects is discussed, but considered unlikely. Instead, morphology, chemistry and size distribution all indicate that the objects are fossilised microbes that lived in the veins at the time and depth of vein formation.  相似文献   
9.
In situ atomic force microscopy (AFM) has been used to compare the growth of pure calcite and the growth of calcite in the presence of sulfate ions from aqueous solutions at a constant value of supersaturation (S.I. = 0.89) with respect to calcite. The effect of sulfate ions on calcite growth rates is determined and a potential incorporation of sulfate ions is identified in the calcite during growth. Solutions supersaturated with respect to calcite with solution concentration ratio of one and a constant pH of 10.2, were prepared and sulfate was added as Na2SO4 aqueous solution. The solution composition was readjusted in order to keep the supersaturation and pH constant. PHREEQC was used to determine relevant solution concentrations. In situ AFM experiments of calcite growth were performed using a fluid cell and flowing solutions passed over a freshly cleaved calcite surface. Growth rates were determined from the closure of the rhombohedral etch pits induced by initial dissolution with pure water. The spreading rate of 2-dimensional nuclei was also measured. At low concentrations of sulfate (≤ 0.5 mM), no effect on the growth rate of the calcite was observed. At higher concentrations (2 to 3 mM) of sulfate, the growth rate increased, possibly because a higher concentration of calcium and carbonate was necessary to maintain the supersaturation constant. At much higher concentrations of additional sulfate (up to 60 mM) the growth rate of the calcite was substantially decreased, despite the fact that a further increase of calcium and carbonate was required. The morphology of 2-dimensional growth nuclei became increasingly elongated with increasing sulfate content. Measurements of step height showed that newly grown steps were approximately 1 Å higher when grown in high sulfate concentrations, compared to steps grown in sulfate-free solutions. At sulfate concentrations above 5 mM the growth mechanism changes from layer growth to surface roughening. These observations suggest that the new growth has incorporated sulfate into the calcite surface.  相似文献   
10.
The Lanping basin is a significant Pb–Zn–Cu–Ag mineralization belt of the Sanjiang Tethyan metallogenic province in China. Over 100 thrust-controlled, sediment-hosted, Himalayan base metal deposits have been discovered in this basin, including the largest sandstone-hosted Pb–Zn deposit in the world (Jinding), and several Cu ± Ag ± Co deposits (Baiyangping, Baiyangchang and Jinman). These deposits, with total reserves of over 16.0 Mt Pb + Zn, 0.6 Mt Cu, and 7000 t Ag, are mainly hosted in Meso-Cenozoic mottled clastic rocks, and strictly controlled by two Cenozoic thrust systems developed in the western and eastern segments of the Lanping basin.To define the metallogenic history of the study area, we dated nine calcite samples associated with copper sulfides from the Jinman Cu deposit by the Sm–Nd method and five molybdenite samples from the Liancheng Cu–Mo deposit by the Re–Os method. The calcite Sm–Nd age for the Jinman deposit (58 ± 5 Ma) and the molybdenite Re–Os age for the Liancheng deposit (48 ± 2 Ma), together with previously published chronological data, demonstrate (1) the Cu–Ag mineralization in the western Lanping basin mainly occurred in three episodes (i.e., ∼56–54, 51–48, and 31–29 Ma), corresponding to the main- and late-collisional stages of the Indo–Asian orogeny; and (2) the Pb–Zn–Ag (±Cu) mineralization in the eastern Lanping basin lacked precise and direct dating, however, the apatite fission track ages of several representative deposits (21 ± 4 Ma to 32 ± 5 Ma) may offer some constraints on the mineralization age.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号