首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   9篇
地球物理   2篇
地质学   18篇
海洋学   4篇
综合类   1篇
自然地理   4篇
  2022年   1篇
  2017年   3篇
  2016年   3篇
  2015年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2009年   1篇
  2008年   1篇
  2007年   3篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1994年   1篇
  1992年   1篇
排序方式: 共有29条查询结果,搜索用时 78 毫秒
1.
The so called bituminous salts occurring in the Kłodawa dome, located in Central Poland, differ from the surrounding salts by their colour change from light to dark brown. This colour is associated with an extremely large amount of hydrocarbon, mainly located in the inclusions. The presence of numerous fluid inclusions has been documented in previous petrologic studies, distinguishing seven main types of fluid inclusion assemblages (FIA) in terms of size, shape as well as the ratio of filling material. However, four types of inclusions were selected in the current investigations according to their unusual optical behaviour. Raman micro-spectroscopy a modern, non-destructive method was used for investigating a single inclusion being a part of FIA. Presented in this paper Raman spectra revealed a unique pattern of bands characterizing the content of the inclusions. The hydrocarbons show a very complex character reflected in the appearance of a strong fluorescence background. A well-marked heterogeneity characterized the inclusions, by diversity in the intensity of the background and in the pattern of the bands characterizing the presence of certain components. One can distinguish the presence of carbonaceous matter showing the different degrees of order. The depth profile and the analysis of the various points of the inclusions indicate that the carbonaceous matter is not evenly distributed in the inclusions but forms a thin, disorganized film on their walls. This film was also found in sites where the inclusions are filled with brine. The certain characteristics associated with the presence of the incipient phase transformation of the organic matter, or slightly transformed organic matter and the lack of light hydrocarbons as well as a number of petrologic features of inclusions indicate that these salt rocks have been subdivided into thermal transformations, accompanied by the recrystallization of the halite and the escape of the more volatile compounds such as methane, ethane, etc.  相似文献   
2.
The sandstone formation of the Middle Buntsandstein (Lower Triassic) in the geothermal well Groß Buchholz Gt1, Hanover, Northern Germany, was hydraulically stimulated to generate a heat exchanger surface, using 20000 m3 of fresh water. After six months of enclosure the recovered water was oversaturated with respect to halite at surface conditions. Due to cooling induced precipitation a salt plug formed between 655 and 1350 m depth in the tubing. While the Na/Br and the Cl/Br ratio of the recovered water reflect the signature of a relic evaporative solution the recovered water contains tritium, indicating a significant proportion of fresh water. Leaching experiments of the reservoir rocks point towards presence of traces of soluble salt minerals in the formation. Therefore we assume that the salinity cannot be attributed solely to halite dissolution nor to the production of a pure formation brine. The recovered water is a result of a combination of both salt dissolution by injected fresh water and of mixing with a formation brine which has undergone water–rock interaction. The calculated fresh water proportion in the recovered water is around 40%. The presence of salt mineral traces in pores of a target formation is a potential threat for the operation of geothermal wells, as cooling-induced salt scaling jeopardizes their performance.  相似文献   
3.
Differences in fluids origin, creation of overpressure and migration are compared for end member Neogene fold and thrust environments: the deepwater region offshore Brunei (shale detachment), and the onshore, arid Central Basin of Iran (salt detachment). Variations in overpressure mechanism arise from a) the availability of water trapped in pore-space during early burial (deepwater marine environment vs arid, continental environment), and b) the depth/temperature at which mechanical compaction becomes a secondary effect and chemical processes start to dominate overpressure development. Chemical reactions associated with smectite rich mud rocks in Iran occur shallow (∼1900 m, smectite to illite transformation) causing load-transfer related (moderate) overpressures, whereas mechanical compaction and inflationary overpressures dominate smectite poor mud rocks offshore Brunei. The basal detachment in deepwater Brunei generally lies below temperatures of about 150 °C, where chemical processes and metagenesis are inferred to drive overpressure development. Overall the deepwater Brunei system is very water rich, and multiple opportunities for overpressure generation and fluid leakage have occurred throughout the growth of the anticlines. The result is a wide variety of fluid migration pathways and structures from deep to shallow levels (particularly mud dykes, sills, laccoliths, volcanoes and pipes, fluid escape pipes, crestal normal faults, thrust faults) and widespread inflationary-type overpressure. In the Central Basin the near surface environment is water limited. Mechanical and chemical compaction led to moderate overpressure development above the Upper Red Formation evaporites. Only below thick Early Miocene evaporites have near lithostatic overpressures developed in carbonates and marls affected by a wide range of overpressure mechanisms. Fluid leakage episodes across the evaporites have either been very few or absent in most areas. Locations where leakage can episodically occur (e.g. detaching thrusts, deep normal faults, salt welds) are sparse. However, in both Iran and Brunei crestal normal faults play an important role in the transmission of fluids in the upper regions of folds.  相似文献   
4.
现代和古代蒸发石盐中流体包裹体去除实验表明,利用在马弗炉中爆裂石盐流体包裹体的方法可以在很大程度上除去残存的微小流体包裹体。爆裂法较无水乙醇研磨法能更有效地消除流体包裹体的影响,从而可进一步提高固相石盐中微量元素的测试精度。  相似文献   
5.
Differences in fluids origin, creation of overpressure and migration are compared for end member Neogene fold and thrust environments: the deepwater region offshore Brunei (shale detachment), and the onshore, arid Central Basin of Iran (salt detachment). Variations in overpressure mechanism arise from a) the availability of water trapped in pore-space during early burial (deepwater marine environment vs arid, continental environment), and b) the depth/temperature at which mechanical compaction becomes a secondary effect and chemical processes start to dominate overpressure development. Chemical reactions associated with smectite rich mud rocks in Iran occur shallow (∼1900 m, smectite to illite transformation) causing load-transfer related (moderate) overpressures, whereas mechanical compaction and inflationary overpressures dominate smectite poor mud rocks offshore Brunei. The basal detachment in deepwater Brunei generally lies below temperatures of about 150 °C, where chemical processes and metagenesis are inferred to drive overpressure development. Overall the deepwater Brunei system is very water rich, and multiple opportunities for overpressure generation and fluid leakage have occurred throughout the growth of the anticlines. The result is a wide variety of fluid migration pathways and structures from deep to shallow levels (particularly mud dykes, sills, laccoliths, volcanoes and pipes, fluid escape pipes, crestal normal faults, thrust faults) and widespread inflationary-type overpressure. In the Central Basin the near surface environment is water limited. Mechanical and chemical compaction led to moderate overpressure development above the Upper Red Formation evaporites. Only below thick Early Miocene evaporites have near lithostatic overpressures developed in carbonates and marls affected by a wide range of overpressure mechanisms. Fluid leakage episodes across the evaporites have either been very few or absent in most areas. Locations where leakage can episodically occur (e.g. detaching thrusts, deep normal faults, salt welds) are sparse. However, in both Iran and Brunei crestal normal faults play an important role in the transmission of fluids in the upper regions of folds.  相似文献   
6.
Viscosity contrasts displayed in flow structures of a mountain namakier (Kuh-e-Namak - Dashti), between ‘weak’ second phase bearing rock salt and ‘strong’ pure rock salt types are studied for deformation mechanisms using detailed quantitative microstructural study. While the solid inclusions rich (“dirty”) rock salts contain disaggregated siltstone and dolomite interlayers, “clean” salts reveal microscopic hematite and remnants of abundant fluid inclusions in non-recrystallized cores of porphyroclasts. Although the flow in both, the recrystallized “dirty” and “clean” salt types is accommodated by combined mechanisms of pressure-solution creep (PS), grain boundary sliding (GBS), transgranular microcracking and dislocation creep accommodated grain boundary migration (GBM), their viscosity contrasts observed in the field outcrops are explained by: 1) enhanced ductility of “dirty” salts due to increased diffusion rates along the solid inclusion-halite contacts than along halite–halite contacts, and 2) slow rates of intergranular diffusion due to dissolved iron and inhibited dislocation creep due to hematite inclusions for “clean” salt types Rheological contrasts inferred by microstructural analysis between both salt rock classes apply in general for the “dirty” salt forming Lower Hormuz and the “clean” salt forming the Upper Hormuz of the Hormuz Formation and imply strain rate gradients or decoupling along horizons of mobilized salt types of different composition and microstructure.  相似文献   
7.
可可西里雅西措组发育多层石盐层。为有效识别石盐矿深度、厚度,预测其工业品位,提出基于归一化后的自然伽马和密度曲线重构石盐指示曲线,用以划分石盐与砂泥岩,该方法与测井交会图法、测井曲线重叠法相比精度高。利用石盐指示曲线与石盐样品测试结果建立预测石盐矿工业品位相关关系,与自然伽马法、孔隙度曲线法计算的结果相比,误差小,应用效果良好。因此,测井方法在石盐勘探评价中具有广泛的运用前景。  相似文献   
8.
Stable chlorine isotopes are useful geochemical tracers in processes involving the formation and evolution of evaporitic halite. Halite and dissolved chloride in groundwater that has interacted with halite in arid non-marine basins has a δ37Cl range of 0 ± 3‰, far greater than the range for marine evaporites. Basins characterized by high positive (+1 to +3‰), near-0‰, and negative (−0.3 to −2.6‰) are documented. Halite in weathered crusts of sedimentary rocks has δ37Cl values as high as +5.6‰. Salt-excluding halophyte plants excrete salt with a δ37Cl range of −2.1 to −0.8‰. Differentiated rock chloride sources exist, e.g. in granitoid micas, but cannot provide sufficient chloride to account for the observed data. Single-pass application of known fractionating mechanisms, equilibrium salt-crystal interaction and disequilibrium diffusive transport, cannot account for the large ranges of δ37Cl. Cumulative fractionation as a result of multiple wetting-drying cycles in vadose playas that produce halite crusts can produce observed positive δ37Cl values in hundreds to thousands of cycles. Diffusive isotope fractionation as a result of multiple wetting-drying cycles operating at a spatial scale of 1–10 cm can produce high δ37Cl values in residual halite. Chloride in rainwater is subject to complex fractionation, but develops negative δ37Cl values in certain situations; such may explain halite deposits with bulk negative δ37Cl values. Future field studies will benefit from a better understanding of hydrology and rainwater chemistry, and systematic collection of data for both Cl and Br.  相似文献   
9.
Niobium (Nb) in carbonatite is mainly hosted in fluorcalciopyrochlore and columbite-(Fe). Information related to Nb petrogenesis is useful for understanding the processes related to Nb mineralization and carbonatite evolution. The Saint-Honoré, Quebec, alkaline complex offers a rare opportunity for studying these processes as the complex is not affected by post-emplacement deformation, metamorphism nor weathering. Columbite-(Fe) is shown to be an alteration product of fluorcalciopyrochlore (columbitization). Columbitization is characterized by the leaching of Na and F from the A- and Y-sites of the pyrochlore crystal structure. As alteration increases, Fe and Mn are slowly introduced while Ca is simultaneously leached. Leached Ca and F then crystallize as inclusions of calcite and fluorite within the columbite-(Fe). A-site cations and vacancies in the crystal structure of fresh and altered pyrochlores demonstrate that pyrochlore alteration is hydrothermal in origin. Moreover, halite is a ubiquitous mineral in the Saint-Honoré alkaline complex. Petrographic evidence shows that halite forms in weakly altered pyrochlores, suggesting halite has a secondary origin. As alteration increases, halite is expelled by the hydrothermal fluid and is carried farther into the complex, filling factures throughout the carbonatite. The hydrothermal hypothesis is strengthened by significant enrichments in Cl and HREEs in columbite-(Fe). Chlorine is most likely introduced by a hydrothermal fluid that increases the solubility of REEs.  相似文献   
10.
Zechstein (Z1) rocksalt from the Fulda basin, from the immediate vicinity of the Hessen potash bed is folded into tight to isoclinal folds which are cut by an undeformed, 1 cm thick, coarse-grained halite vein. Microstructures were investigated in etched, gamma-irradiated thin sections from both the wall rock and the vein. The lack of synsedimentary dissolution structures and the widespread occurrence of plate-shaped and hopper grains in the wall-rock suggests that the sedimentary environment was perennial lake. Deformation microstructures are in good agreement with solution-precipitation creep process, and salt flow under very low differential stress. Strength contrast between anhydrite-rich and anhydrite-poor layers caused the small scale folding in the halite beds. The vein is completely sealed and composed mainly of euhedral to subhedral halite grains, which often overgrow the wall-rock grains. Those microstructures, together with the presence of occasional fluid inclusion bands, suggest that the crystals grew into a solution-filled open space. Based on considerations on the maximum value of in-situ differential stress, the dilatancy criteria, the amount of released fluids from the potash bed during metamorphism and the volume change, it is proposed that the crack was generated by hydrofracturing of the rocksalt due to the presence of the salt-metamorphic fluid at near-lithostatic pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号