首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
  国内免费   1篇
地球物理   10篇
地质学   1篇
自然地理   2篇
  2017年   1篇
  2008年   3篇
  2006年   1篇
  2005年   1篇
  2004年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
We present analyses of two swarms of long-period (LP) earthquakes at > 30 km depth that accompanied the geodetically observed 2002–2005 Mauna Loa intrusion. The first LP earthquake swarm in 2002 consisted of 31 events that were precursory and preceded the start of Mauna Loa inflation; the second LP swarm of two thousand events occurred from 2004–2005. The rate of LP earthquakes slowed significantly coincident with the occurrence of the December 26, 2004 Mw 9.3 Sumatra earthquake, suggesting that the seismic waves from this great earthquake may have had a dynamic triggering effect on the behavior of Mauna Loa's deep magma system. Using waveform cross correlation and double difference relocation, we find that a large number of earthquakes in each swarm are weakly similar and can be classified into two families. The relocated hypocenters for each family collapse to compact point source regions almost directly beneath the Mauna Loa intrusion. We suggest that the observed waveform characteristics are compatible with each family being associated with the resonance of a single fluid filled vertical crack of fixed geometry, with differences in waveforms between events being produced by slight variations in the trigger mechanism. If these LP earthquakes are part of the primary magma system that fed the 2002–2005 intrusion, as indicated by the spatial and temporal associations between mantle seismicity and surface deformation, then our results raise the possibility that this magma system may be quite focused at these depths as opposed to being a diffuse network. It is likely that only a few locations of Mauna Loa's deep magma system met the geometric and fluid dynamic conditions for generating LP earthquakes that were large enough to be recorded at the surface, and that much of the deep magma transfer associated with the 2002–2005 intrusion occurred aseismically.  相似文献   
2.
Lava flows from Mauna Loa and Huallai volcanoes are a major volcanic hazard that could impact the western portion of the island of Hawaii (e.g., Kona). The most recent eruptions of these two volcanoes to affect Kona occurred in a.d. 1950 and ca. 1800, respectively. In contrast, in eastern Hawaii, eruptions of neighboring Klauea volcano have occurred frequently since 1955, and therefore have been the focus for hazard mitigation. Official preparedness and response measures are therefore modeled on typical eruptions of Klauea.The combinations of short-lived precursory activity (e.g., volcanic tremor) at Mauna Loa, the potential for fast-moving lava flows, and the proximity of Kona communities to potential vents represent significant emergency management concerns in Kona. Less is known about past eruptions of Huallai, but similar concerns exist. Future lava flows present an increased threat to personal safety because of the short times that may be available for responding.Mitigation must address not only the specific characteristics of volcanic hazards in Kona, but also the manner in which the hazards relate to the communities likely to be affected. This paper describes the first steps in developing effective mitigation plans: measuring the current state of peoples knowledge of eruption parameters and the implications for their safety. We present results of a questionnaire survey administered to 462 high school students and adults in Kona. The rationale for this study was the long lapsed time since the last Kona eruption, and the high population growth and expansion of infrastructure over this time interval. Anticipated future growth in social and economic infrastructure in this area provides additional justification for this work.The residents of Kona have received little or no specific information about how to react to future volcanic eruptions or warnings, and short-term preparedness levels are low. Respondents appear uncertain about how to respond to threatening lava flows and overestimate the minimum time available to react, suggesting that personal risk levels are unnecessarily high. A successful volcanic warning plan in Kona must be tailored to meet the unique situation there.  相似文献   
3.
Emplacement of a giant submarine slide complex, offshore of South Kona, Hawaii Island, was investigated in 2001 by visual observation and in-situ sampling on the bench scarp and a megablock, during two dives utilizing the Remotely Operated Vehicle (ROV) Kaiko and its mother ship R/V Kairei. Topography of the bench scarp and megablocks were defined in 3-D perspective, using high-resolution digital bathymetric data acquired during the cruise. Compositions of 34 rock samples provide constraints on the landslide source regions and emplacement mechanisms. The bench scarp consists mainly of highly fractured, vesiculated, and oxidized aa lavas that slumped from the subaerial flank of ancestral Mauna Loa. The megablock contains three units: block facies, matrix facies, and draped sediment. The block facies contains hyaloclastite interbedded with massive lava, which slid from the shallow submarine flank of ancestral Mauna Loa, as indicated by glassy groundmass of the hyaloclastite, low oxidation state, and low sulfur content. The matrix facies, which directly overlies the block facies and is similar to a lahar deposit, is thought to have been deposited from the water column immediately after the South Kona slide event. The draped sediment is a thin high-density turbidite layer that may be a distal facies of the Alika-2 debris-avalanche deposit; its composition overlaps with rocks from subaerial Mauna Loa. The deposits generated by the South Kona slide vary from debris avalanche deposit to turbidite. Spatial distribution of the deposits is consistent with deposits related to large landslides adjacent to other Hawaiian volcanoes and the Canary Islands.  相似文献   
4.
Pyroclastic cones along the southwest coast of Mauna Loa volcano, Hawai'i, have a common structure: (a) an early formed circular outer rim 200–400 m in diameter composed mostly of scoria and lapilli, and (b) one or more later-formed inner rims composed almost exclusively of dense spatter. The spatter activity locally fed short lava flows that ponded within the outer rims. Based on various lines of evidence, these cones are littoral in origin: relationships between the cones and associated flows; the degassed nature of the pyroclasts; and (although not unequivocal) the position of the cones relative to known eruptive vent locations on Mauna Loa. Additional support for the littoral interpretation comes from their similarity to (smaller) littoral cones that have been observed forming during the ongoing Kilauea eruption. The structure of these Mauna Loa cones, however, contrasts with that of standard Hawaiian littoral cones in that there is (or once was) a complete circle of pyroclastic deposits. Furthermore, they are large even though associated with tubefed phoehoe flows instead of 'a'. The following origin is proposed: An initial flow of tube-fed phoehoe into the ocean built a lava delta with a base of hyaloclastite. Collapse of an inland portion of the active tube into the underlying wet hyaloclastites or a water-filled void allowed sufficient mixing of water and liquid lava to generate strong explosions. These explosions broke through the top of the flow and built up the outer scoria/lapilli rims on the solid carapace of the lava delta. Eventually, the supply of water diminished, the explosions declined in intensity to spattering, and the initial rim was filled with spatter and lava.  相似文献   
5.
Using the FLOWGO thermo-rheological model we have determined cooling-limited lengths of channel-fed (i.e. a) lava flows from Mauna Loa. We set up the program to run autonomously, starting lava flows from every 4th line and sample in a 30-m spatial-resolution SRTM DEM within regions corresponding to the NE and SW rift zones and the N flank of the volcano. We consider that each model run represents an effective effusion rate, which for an actual flow coincides with it reaching 90% of its total length. We ran the model at effective effusion rates ranging from 1 to 1,000 m3 s–1, and determined the cooling-limited channel length for each. Keeping in mind that most flows extend 1–2 km beyond the end of their well-developed channels and that our results are non-probabilistic in that they give all potential vent sites an equal likelihood to erupt, lava coverage results include the following: SW rift zone flows threaten almost all of Mauna Loas SW flanks, even at effective effusion rates as low as 50 m3 s–1 (the average effective effusion rate for SW rift zone eruptions since 1843 is close to 400 m3 s–1). N flank eruptions, although rare in the recent geologic record, have the potential to threaten much of the coastline S of Keauhou with effective effusion rates of 50–100 m3 s–1, and the coast near Anaehoomalu if effective effusion rates are 400–500 m3 s–1 (the 1859 a flow reached this coast with an effective effusion rate of 400 m3 s–1). If the NE rift zone continues to be active only at elevations >2,500 m, in order for a channel-fed flow to reach Hilo the effective effusion rate needs to be 400 m3 s–1 (the 1984 flow by comparison, had an effective effusion rate of 200 m3 s–1). Hilo could be threatened by NE rift zone channel-fed flows with lower effective effusion rates but only if they issue from vents at 2,000 m or lower. Populated areas on Mauna Loas SE flanks (e.g. Phala), could be threatened by SW rift zone eruptions with effective effusion rates of 100 m3 s–1.Editorial responsibility: J Donnelly-Nolan  相似文献   
6.
CO2 and temperature records at Mauna Loa, Hawaii, and other observation stations show that the correlation between CO2 and temperature is not significant. These stations are located away from big cities, and in various latitudes and hemispheres. But the correlation is significant in global mean data. Over the last five decades, CO2 has grown at an accelerating rate with no corresponding rise in temperature in the stations. This discrepancy indicates that CO2 probably is not the driving force of temperature change globally but only locally (mainly in big cities). We suggest that the Earth''s atmospheric concentration of CO2 is too low to drive global temperature change. Our empirical perception of the global warming record is due to the urban heat island effect:temperature rises in areas with rising population density and rising industrial activity. This effect mainly occurs in the areas with high population and intense human activities, and is not representative of global warming. Regions far from cities, such as the Mauna Loa highland, show no evident warming trend. The global monthly mean temperature calculated by record data, widely used by academic researchers, shows R2=0.765, a high degree of correlation with CO2. However, the R2 shows much less significance (mean R2=0.024) if calculated by each record for 188 selected stations over the world. This test suggests that the inflated high correlation between CO2 and temperature (mean R2=0.765-0.024=0.741) used in reports from the Intergovernmental Panel on Climate Change (IPCC) was very likely produced during data correction and processing. This untrue global monthly mean temperature has created a picture:human emission drives global warming.  相似文献   
7.
An eruption in January of 1907, from the southwest rift zone of Mauna Loa, produced a substantial lava flow field. Satellite images and Differential Global Positioning System (DGPS) survey data, along with observations and photographs from the field, are combined to provide a new perspective on the 1907 eruption. Boundaries of the flow field from the satellite data, combined with field measurements of flow thickness, indicate an area of 25.1 km2 and a volume of 86.6 million m3. The eastern lobe of the flow field covers an area of 13.1 km2, with a volume of 55.0 million m3, and was emplaced with an average effusion rate of 119 m3/s (at least, for the upper portion of the lobe). Ten DGPS topographic profiles across the eastern lobe aid in distinguishing the characteristics of, and transitions between, the zones identified during the emplacement of the 1984 Mauna Loa flow. Several subdivisions have been built directly on top of or adjacent to the 1907 lava flow. The strong likelihood of future eruptions from the Mauna Loa southwest rift zone makes these housing developments of particular importance for assessments of potential volcanic hazards.  相似文献   
8.
Six sites between 0 m and 4000 m were sampled for plant and soil chemical characteristics along the Río Loa, Atacama Desert, Chile. Sites located between 0 m and 1500 m showed lower species richness, higher plant cover and higher herbaceous productivity than the upper part of the altitudinal gradient. The number of species varied non-linerly with precipitation along the altitudinal gradient. Plant cover and herbaceous productivity in the lowlands is characterized by thePluchea absinthioides Distichlis spicataassociation of anthropic origin. We propose that vegetation structure along the altitudinal gradient has been affected by past and present human activities, and climatic and edaphic factors.  相似文献   
9.
Explosive eruptions at Mauna Loa summit ejected coarse-grained blocks (free of lava coatings) from Moku'aweoweo caldera. Most are gabbronorites and gabbros that have 0–26 vol.% olivine and 1–29 vol.% oikocrystic orthopyroxene. Some blocks are ferrogabbros and diorites with micrographic matrices, and diorite veins (≤ 2 cm) cross-cut some gabbronorites and gabbros. One block is an open-textured dunite.

The MgO of the gabbronorites and gabbros ranges  7–21 wt.%. Those with MgO > 10 wt.% have some incompatible-element abundances (Zr, Y, REE; positive Eu anomalies) lower than those in Mauna Loa lavas of comparable MgO; gabbros (MgO < 10 wt.%) generally overlap lava compositions. Olivines range Fo83–58, clinopyroxenes have Mg#s  83–62, and orthopyroxene Mg#s are 84–63 — all evolved beyond the mineral-Mg#s of Mauna Loa lavas. Plagioclase is An75–50. Ferrogabbro and diorite blocks have  3–5 wt.% MgO (TiO2 3.2–5.4%; K2O 0.8–1.3%; La 16–27 ppm), and a diorite vein is the most evolved (SiO2 59%, K2O 1.5%, La 38 ppm). They have clinopyroxene Mg#s 67–46, and plagioclase An57–40. The open-textured dunite has olivine  Fo83.5. Seven isotope ratios are 87Sr/86Sr 0.70394–0.70374 and 143Nd/144Nd 0.51293–0.51286, and identify the suite as belonging to the Mauna Loa system.

Gabbronorites and gabbros originated in solidification zones of Moku'aweoweo lava lakes where they acquired orthocumulate textures and incompatible-element depletions. These features suggest deeper and slower cooling lakes than the lava lake paradigm, Kilauea Iki, which is basalt and picrite. Clinopyroxene geobarometry suggests crystallization at < 1 kbar P. Highly evolved mineral Mg#s, < 75, are largely explained by cumulus phases exposed to evolving intercumulus liquids causing compositional ‘shifts.’ Ferrogabbro and diorite represent segregation veins from differentiated intercumulus liquids filter pressed into rigid zones of cooling lakes. Clinopyroxene geobarometry suggests < 300 bar P. Open-textured dunite represents olivine-melt mush, precursor to vertical olivine-rich bodies (as in Kilauea Iki). Its Fo83.5 identifies the most primitive lake magma as  8.3 wt.% MgO. Mass balancing and MELTS show that such a magma could have yielded both ferrogabbro and diorite by ≥ 50% fractional crystallization, but under different fO2: < FMQ (250 bar) led to diorite, and FMQ (250 bar) yielded ferrogabbro. These segregation veins, documented as similar to those of Kilauea, testify to appreciable volumes of ‘rhyolitic’ liquid forming in oceanic environments. Namely, SiO2-rich veins are intrinsic to all shields that reached caldera stage to accommodate various-sized cooling, differentiating lava lakes.  相似文献   

10.
During the 1969–1974 Mauna Ulu eruption on Kilauea's upper east rift zone, lava tubes were observed to develop by four principal processes: (1) flat, rooted crusts grew across streams within confined channels; (2) overflows and spatter accreted to levees to build arched roofs across streams; (3) plates of solidified crust floating downstream coalesced to form a roof; and (4) pahoehoe lobes progressively extended, fed by networks of distributaries beneath a solidified crust. Still another tube-forming process operated when pahoehoe entered the ocean; large waves would abruptly chill a crust across the entire surface of a molten stream crossing through the surf zone. These littoral lava tubes formed abruptly, in contrast to subaerial tubes, which formed gradually. All tube-forming processes were favored by low to moderate volume-rates of flow for sustained periods of time. Tubes thereby became ubiquitous within the pahoehoe flows and distributed a very large proportionof the lava that was produced during this prolonged eruption. Tubes transport lava efficiently. Once formed, the roofs of tubes insulate the active streams within, allowing the lava to retain its fluidity for a longer time than if exposed directly to ambient air temperature. Thus the flows can travel greater distances and spread over wider areas. Even though supply rates during most of 1970–1974 were moderate, ranging from 1 to 5 m3/s, large tube systems conducted lava as far as the coast, 12–13 km distant, where they fed extensive pahoehoe fields on the coastal flats. Some flows entered the sea to build lava deltas and add new land to the island. The largest and most efficient tubes developed during periods of sustained extrusion, when new lava was being supplied at nearly constant rates. Tubes can play a major role in building volcanic edifices with gentle slopes because they can deliver a substantial fraction of lava erupted at low to moderate rates to sites far down the flank of a volcano. We conclude, therefore, that the tendency of active pahoehoe flows to form lava tubes is a significant factor in producing the common shield morphology of basaltic volcanoes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号