首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   10篇
大气科学   1篇
地球物理   14篇
海洋学   1篇
自然地理   3篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2014年   3篇
  2013年   4篇
  2012年   2篇
  2008年   3篇
  2004年   1篇
排序方式: 共有19条查询结果,搜索用时 265 毫秒
1.
以钛酸四丁酯(TEOS)、去离子水为原料,离子液体1-丁基-3-甲基四氟硼酸咪唑盐([Bmim]BF4)为表面活性剂,通过溶剂热法制备了锐钛矿相TiO2纳米颗粒。用X-射线衍射仪(XRD)、扫描电镜(SEM)、紫外-可见吸收光谱仪(UV-Vis)对产物的晶相、形貌和光学性能进行表征。为了评估光催化活性,并以甲基橙水溶液为研究对象,在紫外光照射下分析不同照射时间下光降解效率。结果表明,离子液体、去离子水和钛酸四丁酯的体积比为1.3∶1∶1.3时,反应所得到的TiO2具有较高光催化活性,明显优于未添加离子液体的产品,这一结果可归因于其具有较大的比表面积。  相似文献   
2.
魏贵明 《盐湖研究》2012,20(3):48-53
以无水乙醇为溶剂、1-丁基-3-甲基咪唑四氟硼酸盐([Bmim]BF4)离子液体为表面活性剂,以钛酸四丁酯、六水合硝酸镧为原料,采用共沉淀法制备了不同掺镧量的La-TiO2光催化材料。采用X-射线衍射仪(XRD)、傅里叶变换红外光谱仪(FTIR)、场发射扫描电镜(FESEM)、差热-热重分析仪(TG-DSC)、紫外-可见吸收光谱仪(UV-vis)、比表面及孔隙度分析仪(BET)对其结构、形貌、热稳定性、光学性能及比表面积进行表征。所制备产品的光催化性能在紫外光下进行了光催化降解甲基橙实验,实验结果表明在离子液体的量为0.5mL,掺杂镧量为5%的TiO2纳米材料对甲基橙的降解效果相对较好,降解率最高达到98.73%。  相似文献   
3.
4.
5.
The aim of this research was to decompose isoproturon and adsorb its photoproducts by developing a carbon material from a juice industry waste. Carbon-TiO2 hybrid materials were obtained by impregnating carbonized guava seeds with TiO2 gels prepared from TiOSO4⋅xH2O and NH4OH using glycerol as a binder and thermally treating the materials at 500 °C. Raman studies confirmed the anatase phase of TiO2. SEM images showed isolated TiO2 agglomerates firmly attached to the carbon surface. The adsorption behavior of isoproturon on guava carbon was studied and yielded S-type adsorption isotherms. The photocatalytic activities of the prepared hybrid materials were monitored to study the kinetics and elimination process both of the herbicide and its photoproducts. The reaction was monitored by UV–Vis spectrophotometry, LC-DAD and LC-MS, enabling identification of some intermediate species. Among the photoproducts produced by carbon-TiO2 hybrid materials, amino-isopropylphenol was detected.  相似文献   
6.
7.
Ag‐modified TiO2 nanotube arrays (Ag/TiO2 NAs) were prepared and employed as a photocatalyst for degradation of 17α‐ethinylestradiol (EE2) and inactivation of Escherichia coli. The as‐synthesized Ag/TiO2 NAs were characterized by field‐emission scanning electron microscope (FESEM), X‐ray diffraction (XRD), and X‐ray photoelectron spectroscopy (XPS). It was found that metallic Ag nanoparticles were firmly deposited on the TiO2 NAs with the pore diameter of 100 nm and the length of 550 nm. Photocatalytic degradation of EE2 and inactivation of E. coli were enhanced effectively in an analogical trend using Ag/TiO2 NAs. In particular, Ag/TiO2 NAs exhibited the antimicrobial activity even in the absence of light. The Ag acted as a disinfection agent as well as the dopant of the modified TiO2 NAs photocatalysis by forming a Schottky barrier on the surface of TiO2 NAs. Inorganic ions suppressed the rates of photocatalytic degradation of EE2, with HCO having a more pronounced effect than NO or SO. Humic acid (HA) was found to increase the rate of EE2 degradation.  相似文献   
8.
Magnetic separation has been recognized as an important property for the simple deployment of micro and sub‐microparticles into solution in the field of water treatment. Many materials with desirable properties for water decontamination are hindered due to the difficulty inherent in removing them from solution post‐treatment. By securing these materials to magnetic compounds, this important issue can be solved as removing active materials from wastewater requires only the application of a magnetic field. This review article presents and discusses many recent technologies, in the form of patents, which exploit the property of magnetic separation for advanced water treatment, including methods of adsorbing pollutants from wastewater and magnetically separating them, as well as methods of deploying active materials for the degradation of contaminants, then magnetically retrieving these catalysts. The requirement for advanced wastewater treatment methods becomes more essential as new, persistent contaminants arise as a result of pharmaceuticals, pesticides and industrial processes which cannot be addressed by traditional water treatment procedures. Magnetic separation promises to be a critical factor in these advanced methods, allowing the safe deployment of active materials which would otherwise be unusable, opening the gate to more efficient, economic and environmentally friendly water purification.  相似文献   
9.
Sonolysis and photolysis often exhibit synergistic effects in the degradation of organic molecules. An assay of fish oocyte maturation provides an appropriate experimental system to investigate the hormonal activities of chemical agents. Oocyte maturation in fish is triggered by maturation-inducing hormone (MIH), which acts on receptors on the oocyte surface. A synthetic estrogen, diethylstilbestrol (DES), possesses inducing activity of fish oocyte maturation, and a widely used biocide, pentachlorophenol (PCP), exhibits a potent inhibitory effect on fish oocyte maturation. In this study, the effects of the combined treatment by sonolysis with photolysis (sonophotocatalysis) to diminish the hormonal activity of DES and the maturation preventing activity of PCP was examined. By sonophotocatalysis, hormonal activity of DES was completely lost within 30min and the inhibiting activity of PCP was lost within 120min. These results demonstrated that sonophotocatalysis is effective for diminishing the endocrine-disrupting activity of chemical agents.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号