首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1306篇
  免费   71篇
  国内免费   14篇
测绘学   36篇
大气科学   103篇
地球物理   294篇
地质学   376篇
海洋学   102篇
天文学   311篇
综合类   7篇
自然地理   162篇
  2023年   8篇
  2021年   29篇
  2020年   29篇
  2019年   36篇
  2018年   51篇
  2017年   39篇
  2016年   66篇
  2015年   54篇
  2014年   37篇
  2013年   71篇
  2012年   57篇
  2011年   42篇
  2010年   57篇
  2009年   76篇
  2008年   52篇
  2007年   54篇
  2006年   41篇
  2005年   45篇
  2004年   57篇
  2003年   40篇
  2002年   38篇
  2001年   26篇
  2000年   27篇
  1999年   13篇
  1998年   21篇
  1997年   16篇
  1996年   11篇
  1995年   15篇
  1994年   13篇
  1993年   10篇
  1992年   15篇
  1991年   9篇
  1990年   11篇
  1989年   7篇
  1987年   7篇
  1986年   9篇
  1985年   13篇
  1984年   13篇
  1983年   11篇
  1982年   11篇
  1981年   13篇
  1980年   12篇
  1979年   15篇
  1978年   15篇
  1977年   14篇
  1976年   8篇
  1975年   11篇
  1974年   8篇
  1973年   8篇
  1968年   6篇
排序方式: 共有1391条查询结果,搜索用时 15 毫秒
1.
2.
We analyzed data from 23 boreholes at 19 sites in central and eastern Canada, for the purpose of estimating ground surface temperature (GST) histories. These boreholes were logged down to at least 550 m depth with thermistor probes. Thermal conductivity measurements had been previously made at small depth intervals for the entire depth ranges of most of the boreholes. The temperature profiles of these boreholes do not indicate water disturbance. We estimated terrain effects for each borehole using a time dependent solid-angle method. The thermal perturbations caused by lakes or deforestation near the borehole sites are insignificant in most cases. However, four of the holes were found to be severely influenced by terrain effects. GSTs estimated from the borehole data less influenced by the terraineffects form two groups. The first group, which are generally from data of better quality, show a cold period near the end of the last century before the recent warming trend; the second show it 80–100 years earlier. We consider the former typical of the climate of the Boreal climatic region of Canada. The difference between the two groups may reflect the spacial variability of the climate. Four GST estimates do not belong to either type, and the reasons are discussed.  相似文献   
3.
4.
Groundbased radio observations indicate that Jupiter's ammonia is globally depleted from 0.6 bars to at least 4-6 bars relative to the deep abundance of ∼3 times solar, a fact that has so far defied explanation. The observations also indicate that (i) the depletion is greater in belts than zones, and (ii) the greatest depletion occurs within Jupiter's local 5-μm hot spots, which have recently been detected at radio wavelengths. Here, we first show that both the global depletion and its belt-zone variation can be explained by a simple model for the interaction of moist convection with Jupiter's cloud-layer circulation. If the global depletion is dynamical in origin, then important endmember models for the belt-zone circulation can be ruled out. Next, we show that the radio observations of Jupiter's 5-μm hot spots imply that the equatorial wave inferred to cause hot spots induces vertical parcel oscillation of a factor of ∼2 in pressure near the 2-bar level, which places important constraints on hot-spot dynamics. Finally, using spatially resolved radio maps, we demonstrate that low-latitude features exceeding ∼4000 km diameter, such as the equatorial plumes and large vortices, are also depleted in ammonia from 0.6 bars to at least 2 bars relative to the deep abundance of 3 times solar. If any low-latitude features exist that contain 3-times-solar ammonia up to the 0.6-bar ammonia condensation level, they must have diameters less than ∼4000 km.  相似文献   
5.
6.
7.
Plesiosaurs     
Plesiosaurs are an unusual and intriguing group of extinct aquatic reptiles ( Fig. 1 ). They are sauropterygians, a group known from an array of semi‐aquatic forms during the Triassic period: placodonts, pachypleurosaurs and nothosaurs. The first plesiosaurs are known from the very latest Triassic, but by the Early Jurassic plesiosaurs were cosmopolitan in distribution and lasted successfully to the latest Cretaceous, when they became victims of the K‐T extinction event. Plesiosaurs were predominantly marine organisms, although their fossils are not uncommon in brackish or even fresh water deposits. We know that all plesiosaurs were carnivorous; many of them were top predators in their respective ecosystems. But with no living descendants (or analogues) plesiosaurs are mysterious fossil organisms—as we will see, many questions regarding their biology remain unanswered or contentious. However, plesiosaurs are currently undergoing renewed scientific attention.
Figure 1 Open in figure viewer PowerPoint The beautifully preserved skeleton of the plesiosaur Rhomaleosaurus victor seen in ventral view, from the Lower Jurassic (Toarcian) of Holzmaden, Germany (total length 3.44 m). Redrawn from Fraas (1910).  相似文献   
8.
Loop Current Frontal Eddies (LCFE) in the Gulf of Mexico are simulated with a regional configuration of the Princeton Ocean Model using a feature-oriented initialization technique. The initialization procedure is based on a prior investigation of stability characteristics of the Loop Current (LC). Zonal channel experiments conducted with a multi-layer intermediate equations model allowed to identify conditions necessary for formation and growth of frontal eddies. The simulations were able to reproduce key features of LCFE-topography interaction in the DeSoto Canyon region observed during the “Eddy Intrusion” study.  相似文献   
9.
The original prognostic equations for the JONSWAP-spectrum contained inconsistencies. A subsequent paper (Hasselmann et al., 1976, J. phys. Oceanogr.6, 200–208) attempted to regularise the situation. This paper shows that there were still inconsistencies in the prognostic equations giving overestimations of the first moment of the spectrum and consequently the significant wave height. The prognostic equations are reworked systematically and results presented. It is shown that variable σa, σb and γ must be used to achieve consistent results  相似文献   
10.
SeaMARC II sidescan (imagery and bathymetry) and seismic data reveal the morphology, sedimentary processes, and structural controls on submarine canyon development in the central Izu-Bonin forearc, south of Japan. Canyons extend up to 150 km across the forearc from the trench-slope break to the active volcanic arc. The canyons are most deeply incised (1200–1700 m) into the gentle gradients (1–2°) upslope on the outer arc high (OAH) and lose bathymetric expression on the steep (6–18°) inner trench-slope. The drainage patterns indicate that canyons are formed by both headward erosion and downcutting. Headward erosion proceeds on two scales. Initially, pervasive small-scale mass wasting creates curvilinear channels and pinnate drainage patterns. Large-scale slumping, evidenced by abundant crescent-shaped scarps along the walls and tributaries of Aoga Shima Canyon, occurs only after a channel is present, and provides a mechanism for canyon branching. The largest slump has removed >16 km3 of sediment from an 85 km2 area of seafloor bounded by scarps more than 200 m high and may be in the initial stages of forming a new canyon branch. The northern branch of Aoga Shima Canyon has eroded upslope to the flanks of the arc volcanoes allowing direct tapping of this volcaniclastic sediment source. Headward erosion of the southern branch is not as advanced but the canyon may capture sediments supplied by unconfined (non-channelized) mass flows.Oligocene forearc sedimentary processes were dominated by unconfined mass flows that created sub-parallel and continuous sedimentary sequences. Pervasive channel cut-and-fill is limited to the Neogene forearc sedimentary sequences which are characterized by migrating and unconformable seismic sequences. Extensive canyon formation permitting sediment bypassing of the forearc by canyon-confined mass flows began in the early Miocene after the basin was filled to the spill points of the OAH. Structural lows in the OAH determined the initial locus of canyon formation, and outcropping basement rocks have prevented canyon incision on the lower slope. A major jog in the canyon axis, linear tributaries, and a prominent sidescan lineament all trend NW-NNW, reflecting OAH basement influence on canyon morphology. This erosional fabric may reflect joint/fracture patterns in the sedimentary strata that follow the basement trends. Once the canyons have eroded down to more erosion-resistant levels, channel downcutting slows relative to lateral erosion of the canyon walls. This accounts for the change from a narrow canyon axis in the thickly sedimented forearc basin to a wider, more rugged canyon morphology near the OAH. About 9500 km3 of sediment has been eroded from the central, 200 km long, segment of the Izu-Bonin forearc by the formation of Aoga Shima, Myojin Sho and Sumisu Jima canyons. The volume of sediment presently residing in the adjacent trench, accretionary wedge, and lower slope terrace basin accounts for <25% of that eroded from the canyons alone. This implies that a large volume (>3500 km3 per 100 km of trench, ignoring sediments input via forearc bypassing) has been subducted beneath the toe of the trench slope and the small accretionary prism. Unless this sediment has been underplated beneath the forearc, it has recycled arc material into the mantle, possibly influencing the composition of arc volcanism.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号