首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  国内免费   1篇
测绘学   1篇
地球物理   4篇
地质学   4篇
海洋学   2篇
自然地理   8篇
  2024年   1篇
  2015年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   3篇
  2007年   2篇
  2002年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1987年   1篇
  1977年   1篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
2.
The geomagnetic field intensity during Archaean times is evaluated from a palaeomagnetic and chronological study of a dolerite dyke intruded into the 3000 Ma Nuuk Gneisses at Nuuk (64.2°N, 51.7°W), west Greenland. Plagioclase from the dolerite dyke yields a mean K-Ar age of 2752 Ma. Palaeomagnetic directions after thermal demagnetization of the dyke and the gneiss reveal a positive baked-contact test, indicating that the high-temperature-component magnetization of the dyke is primary. Thellier experiments on 12 dyke specimens yield a palaeointensity value of 13.5±4.4 μT. The virtual dipole moment at ca. 2.8 Ga is 1.9±0.6 × 1022 Am2, which is about one-quarter of the present value. The present study and other available data imply that the Earth's magnetic field at 2.7 ∼ 2.8 Ga was characterized by a weak dipole moment and that a fairly strong geomagnetic field similar to the present intensity followed the weak field after ca. 2.6 Ga.  相似文献   
3.
Antarctic climate changes influence environmental changes at both regional and local scales. Here we report Holocene paleolimnological changes in lake sediment core Sk4C-02 (length 378.0 cm) from Lake Skallen Oike in the Soya Kaigan region of East Antarctica inferred from analyses of sedimentary facies, a range of organic components, isotope ratios of organic carbon and nitrogen, and carbon-14 dating by Tandetron accelerator mass spectrometry. The sediment core was composed of clayish mud (378.0–152.5 cm) overlain by organic sediments (152.5 cm-surface). The age of the surface and the core bottom were 150 (AD1950-1640) and ca. 7,030 ± 73 calibrated years before present (cal BP), respectively, and the mean sedimentation rate was estimated to be 0.55 mm/year. Multi-proxy analyses revealed that the principal environmental change in the core is a transition from marine to lacustrine environments which occurred at a depth of 152.5 cm (ca. 3,590 cal BP). This was caused by relative sea level change brought about by ongoing retreat of glaciers during the mid-Holocene warming of Antarctica, and ongoing isostatic uplift which outpaced changes in global (eustatic) sea level. The mean isostatic uplift rate was calculated to be 2.8 mm/year. The coastal marine period (378.0–152.5 cm, ca. 7,030–3,590 cal BP) was characterized by low biological production with the predominance of diatoms. During the transition period from marine to freshwater conditions (152.5-approximately 135 cm, ca. 3,590–3,290 cal BP) the lake was stratified with marine water overlain by freshwater, with a chemocline and an anoxic (sulfidic) layer in the bottom of the photic zone. Green sulfur bacteria and Cryptophyta were the major photosynthetic organisms. The Cryptophyta appeared to be tolerant of the moderate salinity and stratified water conditions. The lacustrine period (approximately 135 cm-surface, ca. 3,290 cal BP-present) was characterized by high biological production by green algae (e.g. Comarium clepsydra and Oedegonium spp.) with some contributions from cyanobacteria and diatoms. Biological production during this period was 8.7 times higher than during the coastal marine period.  相似文献   
4.
The effect of topography on moss vegetation is examined to clarify the processes that affect the colonization of polar deserts on continental Antarctica. Data on the presence of the mosses Bryum pseudotriquetrum and Pottia heimii, and relative altitude were recorded. The altitude measurements were used to infer the underlying topographical attributes of the substrate in the study plots. Specifically, the local distribution of moss plants was clarified using the topographical attributes to construct generalized linear mixed models (GLMMs). The models suggested that steep slopes and convex microhabitats within areas of concave general relief (at the plot scale 4 × 4 m) promoted the establishment of moss. This correspondence to general relief was more apparent for B. pseudotriquetrum than for P. heimii. Among the study plots, general relief was found to be an important determinant of the precise spatial distribution of B. pseudotriquetrum. The standard surface estimated using the robust methods presented in this study is shown to be more accurate for describing moss distribution than the prevailing least-squares method.  相似文献   
5.
于1992~1994年 ,在中国水科院黄海水产研究所小麦岛试验基地(青岛)进行的“中日合作真鲷增殖放流项目”执行期间 ,对真鲷饵料生物———眼点拟微绿藻 (Nannochloropsisoculata)和L型褶皱臂尾轮虫 (Branchionus plicatilis)进行了大量培养。眼点拟微绿藻的平均接种密度为1211.3×104个/ml,经5~6d的室内或室外露天培养即可达到平均为2341.0×104 个/ml的收获密度 ;采用眼点拟微绿藻和新鲜面包酵母作为混合饵料 ;褶皱臂尾轮虫 (L型 )培养3~4d即可由接种时平均密度148.0个/ml,增长至平均216.8个/ml的采收密度。眼点拟微绿藻和轮虫的日间增殖密度分别是12.8 %和26.6 %。每生产108个褶皱臂尾轮虫需要消耗0.73m3眼点拟微绿藻 (密度为2000×104/ml)和790.8g 鲜面包酵母。采用此法 ,作者连续3a成功地为每年百万尾以上真鲷苗种提供了足够的生物饵料。总结3a苗种培育和生物饵料培养之间的关系 ,作者认为 ,大规模稳定生产海水鱼类苗种时,育苗与饵料生物培养 (褶皱臂尾轮虫和眼点拟微绿藻 )水体的合理比例应为1∶1~1.5∶3。  相似文献   
6.
Ongoing geological research into processes operating on the nearshore continental shelf and beyond is vital to our understanding of modern tsunami-generated sediment transport and deposition. This paper investigates the southern part of Sendai Bay, Japan, by means of high-resolution seismic surveys, vibracoring, bathymetric data assimilation, and radioisotope analysis of a core. For the first time, it was possible to identify an erosional surface in the shallow subsurface, formed by both seafloor erosion and associated offshore-directed sediment transport caused by the 2011 Tohoku-oki tsunami. The area of erosion and deposition extends at least 1,100 m offshore from the shoreline down to water depths of 16.7 m. The tsunami-generated sedimentological signature reaches up to 1.2 m below the present seafloor, whereas bathymetric changes due to storm-related reworking over a period of 3 years following the tsunami event have been limited to the upper ~0.3 m, despite the fact that the study area is located on an open shelf facing the Pacific Ocean. Tsunami-generated erosion surfaces may thus be preserved for extended periods of time, and may even enter the rock record, because the depth of tsunami erosion can exceed the depth of storm erosion. This finding is also important for interpretation of modern submarine strata, since erosion surfaces in shallow (depths less than ~1 m) seismic records from open coast shelves have generally been interpreted as storm-generated surfaces or transgressive ravinement surfaces.  相似文献   
7.
Abstract Illite crystallinity (IC) and illite b, lattice spacing were measured across the Cretaceous Shimanto Belt, Kii Peninsula, Southwest Japan. For the IC survey, 103 samples of argillaceous rocks were analyzed from the central area and the western area of the belt. Values of IC (Kubler Index) vary between 0.28 and 0.71 Δ°2θ and indicate diagenetic and anchizone metamorphism respectively. The IC distribution reveals two contrasting patterns of thermal maturity. The Hanazono Formation, exposed in the northern area of the belt, generally dips north, but IC values increase systematically from 0.28 Δ°2θ in the north to 0.54 Δ°2θ in the south and indicate an inverted thermal structure. Values in other formations vary widely in the southern area of the belt ranging between 0.45 and 0.71 Δ°2θ, but the values do not show any systematic change from north to south and on average remain almost constant. Illite bo, lattice spacing values for 56 samples vary between 9.006 and 9.041 Å corresponding to intermediate pressure conditions of the metamorphic facies. These values, combined with paleotemperatures estimated from IC, indicate paleogeothermal gradients of 22 and 31°C/km for the northern and southern areas of the belt, respectively. The inverted thermal structure of the Hanazono Formation, together with a lower paleogeothermal gradient, possibly is a result of the subduction of a relatively cold oceanic plate during the Late Cretaceous. The higher geothermal gradient could be a product of late thermal overprinting caused by the later subduction of a comparatively younger and hotter oceanic plate during the Eocene.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号