首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
测绘学   2篇
地质学   1篇
  2017年   1篇
  2013年   1篇
  2004年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Many wells in the Sanriku region used as sources for water supply systems were heavily contaminated by the tsunami of the 2011 great Tohoku earthquake on March 11 in 2011. To better understand the nature of the groundwater contamination by the tsunami inundation and to clarify the recovery process of contaminated groundwater at the study wells, groundwater monitoring has been conducted once or twice yearly since early summer in 2011. High and abnormal values of electric conductivity (EC), chloride ion concentration (CIC), Na+, Ca+, heavy metal ions, and heavier isotopes of the contaminated groundwater were also obtained in April and June 2011. The chemical elements have rapidly and exponentially decreased as a result of effective pumping of the contaminated groundwater from the study wells and because of abundant rainfall in 2011. In April 2015 (about 4 years after the tsunami inundation), the CIC and EC of the contaminated groundwater of two study wells in Minamisanriku town had reached pre-inundation values. The estimated residence times of groundwater of the two study wells were 105–118 days in the full-day pumping stage and 910–1000 days in the daytime-only pumping stage.  相似文献   
2.
We plan to estimate global net primary production (NPP) of vegetation using the Advanced Earth Observing Satellite-II (ADEOS-II) Global Imager (GLI) multi-spectral data. We derive an NPP estimation algorithm from ground measurement data on temperate plants in Japan. By the algorithm, we estimate NPP using a vegetation index based on pattern decomposition (VIPD) for the Mongolian Plateau. The VIPD is derived from Landsat ETM+multi-spectral data, and the resulting NPP estimation is compared with ground data measured in a semi-arid area of Mongolia. The NPP estimation derived from satellite remote sensing data agrees with the ground measurement data within the error range of 15% when all above-ground vegetation NPP is calculated for different vegetation classifications.  相似文献   
3.
We plan to estimate global net primary production (NPP) of vegetation using the Advanced Earth Observing Satellite-Ⅱ (ADEOS-Ⅱ) Global Imager (GLI) multi-spectral data. We derive an NPP estimation algorithm from ground measurement data on temperate plants in Japan. By the algorithm, we estimate NPP using a vegetation index based on pattern decomposition (VIPD) for the Mongolian Plateau. The VIPD is derived from Landsat ETM multi-spectral data, and the resulting NPP estimation is compared with ground data measured in a semi-arid area of Mongolia. The NPP estimation derived from satellite remote sensing data agrees with the ground measurement data within the error range of 15% when all above-ground vegetation NPP is calculated for different vegetation classifications.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号