首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
测绘学   4篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
In this contribution, using the example of the Mátern covariance matrices, we study systematically the effect of apriori fully populated variance covariance matrices (VCM) in the Gauss–Markov model, by varying both the smoothness and the correlation length of the covariance function. Based on simulations where we consider a GPS relative positioning scenario with double differences, the true VCM is exactly known. Thus, an accurate study of parameters deviations with respect to the correlation structure is possible. By means of the mean-square error difference of the estimates obtained with the correct and the assumed VCM, the loss of efficiency when the correlation structure is missspecified is considered. The bias of the variance of unit weight is moreover analysed. By acting independently on the correlation length, the smoothness, the batch length, the noise level, or the design matrix, simulations allow to draw conclusions on the influence of these different factors on the least-squares results. Thanks to an adapted version of the Kermarrec–Schön model, fully populated VCM for GPS phase observations are computed where different correlation factors are resumed in a global covariance model with an elevation dependent weighting. Based on the data of the EPN network, two studies for different baseline lengths validate the conclusions of the simulations on the influence of the Mátern covariance parameters. A precise insight into the impact of apriori correlation structures when the VCM is entirely unknown highlights that both the correlation length and the smoothness defined in the Mátern model are important to get a lower loss of efficiency as well as a better estimation of the variance of unit weight. Consecutively, correlations, if present, should not be neglected for accurate test statistics. Therefore, a proposal is made to determine a mean value of the correlation structure based on a rough estimation of the Mátern parameters via maximum likelihood estimation for some chosen time series of observations. Variations around these mean values show to have little impact on the least-squares results. At the estimates level, the effect of varying the parameters of the fully populated VCM around these approximated values was confirmed to be nearly negligible (i.e. a mm level for strong correlations and a submm level otherwise).  相似文献   
2.
3.
Kermarrec  Gaël  Schön  Steffen 《GPS Solutions》2017,21(4):1895-1906
GPS Solutions - The true covariance matrix of the GPS phase observations is unknown and has to be assumed or estimated. The variance of the least-squares residuals was empirically shown to have an...  相似文献   
4.
Current variance models for GPS carrier phases that take correlation due to tropospheric turbulence into account are mathematically difficult to handle due to numerical integrations. In this paper, a new model for temporal correlations of GPS phase measurements based on turbulence theory is proposed that overcomes this issue. Moreover, we show that the obtained model belongs to the Mátern covariance family with a smoothness of 5/6 as well as a correlation time between 125–175 s. For this purpose, the concept of separation distance between two lines-of-sight introduced by Schön and Brunner (J Geod 1:47–57, 2008a) is extended. The approximations made are highlighted as well as the turbulence parameters that should be taken into account in our modeling. Subsequently, fully populated covariance matrices are easily computed and integrated in the weighted least-squares model. Batch solutions of coordinates are derived to show the impact of fully populated covariance matrices on the least-squares adjustments as well as to study the influence of the smoothness and correlation time. Results for a specially designed network with weak multipath are presented by means of the coordinate scatter and the a posteriori coordinate precision. It is shown that the known overestimation of the coordinate precision is significantly reduced and the coordinate scatter slightly improved in the sub-millimeter level compared to solutions obtained with diagonal, elevation-dependent covariance matrices. Even if the variations are small, turbulence-based values for the smoothness and correlation time yield best results for the coordinate scatter.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号