首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
大气科学   1篇
地质学   6篇
自然地理   1篇
  2013年   3篇
  2012年   1篇
  2011年   2篇
  2008年   2篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
The Great East Japan earthquake and tsunami damaged or destroyed many industrial facilities housing or processing hazardous substances, such as refineries, petrochemical facilities and other types of chemical industry. This showed that also generally well prepared countries are at risk of suffering natural hazard triggered technological (Natech) accidents. An analysis of data collected from open sources and through interviews with authorities was performed to understand the main reasons for the industrial damage and downtime as well as the extent of hazardous-materials releases and the associated impact on society. The analysis of the data set confirmed the findings from other studies with respect to main damage and failure modes, as well as hazardous-materials release paths. In addition, gaps in Natech risk management were identified. Based on the data analysis and interviews lessons learned in support of a more far-reaching Natech risk management are presented.  相似文献   
2.
3.
This work analyses the potential consequences of two tsunami scenarios and their impacts on an oil refinery located in Sicily. Two credible tsunamis originating in the Tyrrhenian Sea were selected based on historical data. The potential for damage and hazardous materials releases resulting from the tsunami impacts to a refinery was assessed. The results obtained by the JRC tsunami propagation and inundation code HyFlux2 indicate that in both scenarios there would be eighteen storage tanks (of 43 located within 400 m from the shoreline) at the refinery subject to flooding. Water flow velocities were found to be generally low, <1 m/s, except for a central section of the refinery near the shoreline where the water flow velocities reach 3?C4 m/s. These results indicate that any damage would most likely occur due to buoyancy loads particularly in the western part of the facility where inundation levels are higher and storage tanks are less protected. Potential damage caused by impact of floating debris may be a problem in the central area of the refinery near the shoreline due to high flow velocities (3?C4 m/s) in both tsunami scenarios. Small hazardous materials releases could occur due to breakage of connected pipes and flanges caused by floating off of almost empty storage tanks or other equipment. Salt water intrusion could affect electrical equipment, such as control panels, pumps, and motors that are not raised above the inundation level. We conclude that in the two tsunami scenarios analysed, the risk to nearby residents and neighbouring facilities from potential hazardous materials releases, fires or explosions triggered by the tsunamis is likely to be small. Nonetheless, recommendations are made on prevention measures to reduce the risk of tsunami-triggered accidents and to mitigate their consequences if they do occur. The results of this study are limited by the uncertainty in the input data and most importantly by the accuracy of the elevation data and the model resolution.  相似文献   
4.
There is increasing evidence that natural disasters can trigger technological accidents and damage. These so-called Natech accidents can pose a significant risk to regions that are unprepared for responding to them. The European Commission’s Joint Research Centre has recognised the risk associated with Natech events and has started systematic research into Natechs and their underlying dynamics. This work investigates the risk associated with the flooding of industrial installations through an analysis of past case histories and using expert judgement. The potential impact of three levels of flood severity on selected industrial facilities storing and/or processing (eco-)toxic, flammable or explosive materials is analysed qualitatively and a scale is developed that links the flood intensity to the level of potential damage. Our analysis indicates that natural disasters have the potential for triggering hazmat releases and other types of technological accidents. Hence, natural disasters should be considered as separate accident-triggering events in the planning, design and operating stages of industrial facilities that process or store hazardous substances. Our work revealed a lack of detailed information on the occurrence of Natech events which indicates not necessarily a scarcity of Natechs but rather a lack of standardised reporting and record keeping.  相似文献   
5.
Natural hazards and disasters can cause major accidents in chemical and process installations. These so-called Natech accidents can result in hazardous-materials releases due to damage to process and storage units, or pipes. In order to understand the dynamics of Natech events, accidents triggered by earthquakes, floods and lightning recorded in industrial accident databases were analysed. This allowed the identification of the most vulnerable equipment types, their modes of failure due to natural-event impact and the final accident scenarios. Moreover, lessons learned for future accident prevention and mitigation were derived. The analysis showed that pipes and storage tanks are the most vulnerable equipment for earthquakes, floods and lightning, calling for more research of equipment behaviour under natural-event loading. The damage modes and states are strongly dependent on the characteristics of the impacting natural event. Toxic dispersion, fires and explosions were observed as a consequence of all three types of analysed natural events. In the case of floods, two additional scenarios were identified. These are water contamination and the formation of toxic and/or flammable vapours upon reaction of the released chemicals with the floodwaters. The overall number of recorded Natech accidents was found to range from 2 to 5% of all reported accidents in the analysed databases.  相似文献   
6.
A changing climate and more frequent extreme weather events pose challenges to the oil and gas sector. Identifying how these changes will affect oil and gas extraction, transportation, processing, and delivery, and how these industries can adapt to or mitigate any adverse impacts will be vital to this sector’s supply security. This work presents an overview of the sector’s vulnerability to a changing climate. It addresses the potential for Natech hazards and proposes risk reduction measures, including mitigation and adaptation options. Assessment frameworks to ensure the safety of people, the environment, and investments in the oil and gas sector in the face of climate change are presented and their limitations discussed. It is argued that a comprehensive and systemic analysis framework for risk assessment is needed. The paper concludes that climate change and extreme weather events represent a real physical threat to the oil and gas sector, particularly in low-lying coastal areas and areas exposed to extreme weather events. The sector needs to take climate change seriously, assess its own vulnerability, and take appropriate measures to prevent or mitigate any potentially negative effects.  相似文献   
7.
Geografisk Tidsskrift—Danish Journal of Geography 109(2):119–130, 2009

In our rapidly globalizing world economy activities in one region have increasingly important effects on ecological, economic or social processes elsewhere, an effect which we here denote as ‘teleconnections’ between different regions. Biomass trade, one of the causes behind such teleconnections, is currently growing exponentially. Integrated analyses of changes in the global land system are high on the agenda of sustainability science, but a methodological framework for a consistent allocation of environmental burdens related to the consumption and production of biomass between regions has not been put forth to date. The concept of the ‘embodied human appropriation of net primary production’ (abbreviated ‘embodied HANPP’ or ‘eHANPP’) allows for the assessment of the ‘upstream’ effects on ecosystem energetics associated with a particular level of biomass consumption or with a given biomass-based product. This concept is based on HANPP and its two components: (1) productivity changes resulting from land conversion (ΔNPPLC), and (2) harvest of biomass in ecosystems (NPPh). HANPP, defined as the sum of ΔANPPLC and NPPh in any given territory, is indicative of the intensity with which humans use the land for their purposes. eHANPP is defined as the NPP appropriated in the course of biomass production, encompassing losses along the production chain as well as productivity changes induced through land conversion or harvest. By making the pressure exerted on ecosystems associated with imports and exports visible, eHANPP allows for the analysis of teleconnections between producing and consuming regions. This article puts forward the eHANPP concept, illustrates its utility for integrated socioecological land-change research based on top-down data on global HANPP and biomass consumption, and discusses the possibilities and challenges related to its quantification in bottom-up approaches.  相似文献   
8.
Tsunamis can represent a significant risk to the population and cause huge economic damage in many costal regions. In order to be able to identify risk hot spots and implement targeted risk reduction measures, decision makers need to have a clear picture of the risk situation in their countries or regions. This work reviews existing approaches for tsunami risk assessment and recommends a five-step process for assessing tsunami risk. As a case study, a qualitative risk assessment for a worst-case tsunami scenario was carried out to understand the tsunami risk to the population in Cádiz. Moreover, a sensitivity analysis of the tsunami hazard input parameters was performed as a strong influence of the variability of the input parameters on the resultant tsunami hazard and risk zonation maps was observed. The study shows that regardless of the assumptions made a non-negligible tsunami risk to Cádiz exists.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号