首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
测绘学   1篇
地球物理   2篇
地质学   3篇
海洋学   5篇
  2017年   1篇
  2011年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  2003年   1篇
  2000年   1篇
  1999年   1篇
  1998年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
A time sequence of airborne infrared imagery provides a unique view of phenomena associated with a turbulent tidal intrusion into a stratified bay. During flood tide, cooler water from the Strait of Juan de Fuca is observed to penetrate Sequim Bay (Washington, U.S.V.) as a turbulent jet. After separating from the shoreline, the jet collapses into the stratified middle part of the bay, forming a mushroom-shaped head consisting of a semicircular plunge front and areas of recirculating flow. As the plunge front advances into the estuary, a set of nonlinear internal waves emerges and propagates toward the relatively stagnant southern part of the bay, where they are a potential source of vertical mixing. This range of phenomena is expected based on laboratory studies, but has not been seen previously in a natural setting.  相似文献   
2.
Airborne infrared and synthetic aperture radar imagery collected over the Gulf Stream are used to examine the surface patterns of small-scale thermal convection and wind-driven Langmuir circulation. These patterns have a thermal contrast of ~0.25 °C, which is roughly an order of magnitude larger than predicted by large-eddy simulations but consistent with the effect on surface temperature of surfactant accumulations induced by mixed-layer eddies.  相似文献   
3.
Airborne hyperspectral and thermal infrared imagery collected over the Florida Current provide a view of the disintegration of a Sargassum drift line in 5 m s−1 winds. The drift line consists mostly of rafts 20-80 m2 in size, though aggregations larger than 1000 m2 also occur. Rafts tend to be elongated, curved in the upwind direction, and 0.1-0.5 °C warmer than the surrounding ocean surface. Long weed ‘trails’ extending upwind from the rafts are evidence of plants dropping out and being left behind more rapidly drifting rafts. The raft line may be a remnant of an earlier Sargassum frontal band, which is detectible as an upwind thermal front and areas of submerged weed. Issues are identified that require future field measurements.  相似文献   
4.
A quasi-three-dimensional view of a scallop-shaped river plume front is derived using acoustic Doppler current profiler (ADCP) backscatter measurements recorded in individual range bins. The data show that the scallops consist of broad troughs of plume water separated by narrow cusps of ambient water and have an along-front wavelength of about 13 m. Having this view across such an inhomogeneous region is helpful in interpreting the corresponding ADCP velocity measurements, so that an examination of just those ADCP profiles made in the ambient water shows the expected strong sinking motion, which reaches about 25 cm s?1 at 1–2-m depth.  相似文献   
5.
The ability of high-resolution imaging systems to resolve small-scale structure on the ocean surface suggests the possibility of using characteristics of Langmuir circulation to map the surface mixed-layer depth and near-surface current. We illustrate this using synthetic aperture radar and infrared imagery that are collected across the edge of the Gulf Stream (GS), which reveals surfactant streaks, or ldquowindrows,rdquo that are induced by Langmuir circulation. Based on changes in the windrow spacing and orientation, the mixed layer is estimated to deepen from 7 to 12 m across the edge of the GS and the current to increase from about 1 to 2 m/s. These spatial changes compare reasonably well with independent data, suggesting that the approach is plausible. It may also be possible to extract additional environmental information from the windrows.  相似文献   
6.
Airborne infrared imagery is shown to provide preliminary evidence of surface thermal expressions associated with internal waves that become unstable and break over the continental shelf. These expressions include a narrow wave front that is warmer than the ambient; a wide, spatially intermittent ‘wake’ that is colder than the ambient; and ∼O (10 m) diameter surface-renewal ‘boils’ that populate the wake. These thermal signatures might be useful in assessing the spatial distribution and structure of breaking internal waves.  相似文献   
7.
Using airborne synthetic aperture radar data from the 1990 Gulf Stream Experiment, this paper investigates the polarization and wavelength dependence of radar signatures for narrow fronts with converging flows occurring within the Gulf Stream. The signal-to-background ratios of the cross-polarization backscatter return from a convergent front were found much higher than those of copolarization returns, when the flight path is crossing the front. However, a second convergent front, imaged at 45°, showed that the signal-to-background ratios are nearly equal for co- and cross-polarizations. A polarimetric procedure, which has been successfully used to measure terrain slopes and to generate elevation maps, is applied to the convergent front to explain the polarization and imaging geometry dependence of these radar responses. A theoretical modeling of radar modulation using an ocean wave model and a composite-Bragg scattering model, which incorporates the effect of breaking waves, was developed. Calculations with the model agree reasonably well with the radar measurements at various polarizations for three radar frequencies: P-band (68 cm in wavelength), L-band (24 cm), and C-band (5.7 cm)  相似文献   
8.
Measurements are reported from two side-looking Doppler systems, which were used to study the discharge front located off the mouth of Chesapeake Bay. One system was a commercial 300-kHz narrow-band acoustic Doppler current profiler (ADCP), which was mounted at a depth of 0.6 m on the port side of a research ship. The other was a prototype X-band, vertically polarized, Doppler radar mounted at a height of about 4 m on the starboard side. Both velocity and backscatter intensity were measured along two beams to ranges of 120 m (ADCP) and 200 m (radar), so that by sailing alternately on each side of the front it was possible to make nearly simultaneous across-front measurements with both systems. Despite the differences in acoustic and radar scattering mechanisms, a combined backscatter intensity surface map could be made showing a continuous frontal signature about 10-m wide and 20 dB above background levels. Each system was also able to measure the same large-scale velocity change across the front, which was dominated by the discharging buoyant bay water flowing at about 50 cm/s relative to the ambient continental shelf water. However, within a 60-m wide zone, the radar system measured velocities up to 75 cm/s larger than the ADCP. Such large velocity differences arose from the radar's sensitivity to motions associated with waves reflecting from the region of strongest across-front current convergence. This frontal convergence was resolved only by the ADCP, which showed a horizontal current change of about 25 cm/s over 10 m and appeared to extend over the upper 2 m or so of the water column. These results show that the combined information from the acoustic and radar systems provide a more complete picture of the frontal currents and wave-current interactions than either system could provide alone  相似文献   
9.
In a recent paper, Hedger, R.D., Malthus, T.J., Folkard, A.M., Atkinson, P.M. [2007. Spatial dynamics of estuarine water surface temperature from airborne remote sensing. Estuarine, Coastal and Shelf Science 71, 608–615] demonstrate that airborne thermal remote sensing shows great potential for monitoring estuarine dynamics and surface currents. One aspect needing further attention is the impact of bottom-generated vertical mixing as this can create both stationary thermal features as well as thermal patterns that advect with the flow. This dual effect is illustrated using airborne infrared imagery of a mixing front having an embedded pattern of thermal boils. The boils are several meters in diameter (in water less than 4 m deep) and are ∼0.2 °C cooler than the ambient water surface. Time sequential imagery that captures the movement of individual boils as well as their growth rate can be used to deduce both the near-surface current and the intensity of turbulent mixing.  相似文献   
10.
In situ sampling during flooding tidal flow and southerly winds shows the up-estuary translation of a surface front along the Thimble Shoal channel, which is located in the southern part of Chesapeake Bay. Currents and surface density were measured using a towed acoustic Doppler current profiler and CTD, and a ship-borne radar was used to monitor the orientation and planform of the front, which varied over time. These preliminary observations suggest that dense shelf water, upwelled to the surface along the coast near Cape Henry, Virginia, can be found well into the southern part of the bay during flood, and that the boundary between the intruding shelf water and less dense estuarine water has many of the same characteristics as tidal intrusion fronts found in smaller scale estuaries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号