首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
测绘学   1篇
天文学   2篇
  2010年   1篇
  2009年   1篇
  2008年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
A novel approach based on pulse-coupled neural networks (PCNNs) for image change detection is presented. PCNNs are based on the implementation of the mechanisms underlying the visual cortex of small mammals, and, with respect to more traditional NNs architectures, such as multilayer perceptron, own interesting advantages. In particular, they are unsupervised and context sensitive. This latter property may be particularly useful when very high resolution images are considered as, in this case, an object analysis might be more suitable than a pixel-based one. The qualitative and more quantitative results are reported. The performance of the algorithm has been evaluated on a pair of QuickBird images taken over the test area of Tor Vergata University, Rome.   相似文献   
2.
In the western sector of Nepenthes Mensae, Mars, there are some geomorphological features that could be related to a standing water sheet in the area, such as fluvial terraces, deltas and shorelines. A detailed analysis of these features reveals two variations in water level, probably related to tectonic processes, as suggested by the existence of a fissural volcano at this site.  相似文献   
3.
Throughout the Cenozoic Era, the geological history of the Argentinean Patagonia was dominated by basaltic volcanism and glacial and periglacial environments. Several geological and geomorphological processes that concurred to the sculpting of the landscape of this area could have been similar to those responsible of the shaping of the Martian surface. In this work a survey of some high-resolution satellite images of the Argentinean Patagonia is performed in order to identify possible geomorphological analogs of the Martian surface. Several morphologies that resemble Martian features are presented and discussed. They consist of proglacial and periglacial features, relatively small circular depressions, gullies, fan-deltas, eolian streaks, and diluvial dunes. Results suggest that the Argentinean Patagonia appears to consist of an interesting terrestrial analog for the Martian landscape. Furthermore, the study area shows to be interesting in order to test robotic instruments and human missions equipment, to train astronauts of future human expeditions to Mars, and to perform astrobiological experiments.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号