首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
测绘学   3篇
地质学   3篇
海洋学   1篇
  2019年   1篇
  2013年   3篇
  2011年   2篇
  2010年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Beach morphology relates the mutual adjustment between topography and fluid dynamics. The morphological makeup of beach systems is not accidental because the arrangement and association of forms occur in an organized contextual space and time. Since the classification derived by Wright and Short (1983) from the analysis of the evolution in a number of Southern Tamilnadu beach sites, beach systems are comprehended in terms of three-dimensional morphodynamic models that include quantitative parameters (wave breaking height, sediment fall velocity, wave period, and beach slope) and boundary conditions for definable form-processes association (e.g., the presence or absence of bars as well as their types). This has led to the classification of beaches into three main categories relating the beach state observations with the physical forcing (Short, 1999) dissipative, intermediate (from the intermediate–dissipative domain to the intermediate-reflective domain), and reflective modes. The morphodynamic classification of beach types was based on the Wright–Short equations (1984) (dimensionless fall velocity–Dean parameter).  相似文献   
2.
Shoreline is one of the rapidly changing landform in coastal area. So, accurate detection and frequent monitoring of shorelines are very essential to understand the coastal processes and dynamics of various coastal features. The present study is to investigate the shoreline changes along the coast between Kanyakumari and Tuticorin of south India, where hydrodynamic and morphologic changes occur continuously after the December 2004 tsunami. Multi-date satellite data of Indian Remote Sensing (IRS) satellites (1999, 2000, 2003, 2005, and 2006) are used to extract the shorelines. The satellite data is processed by using the ERDAS IMAGINE 9.1 software and analyzed by ArcGIS 9.2 workstation. The different shoreline change maps are developed and the changes are analyzed with the shoreline obtained from the Survey of India Toposheets (1969). The present study indicates that accretion was predominant along the study area during the period 1969–1999. But recently (from 1999 onwards), most of the coastal areas have experienced erosion. The study also indicates the reversal of shoreline modifications in some coastal zones. The coastal areas along the headlands have experienced both erosion and accretion. Though the coastal erosion is due to both natural and anthropogenic activities, the coastal zones where sand is mined have more impacts and relatively more rate of erosion than that of other zones. Improper and in-sustainable sand mining leads to severe erosion problem along this area. So the concept of sustainable management should be interpreted in the management of the near-shore coastal sand mining industry.  相似文献   
3.
This article reveals an application of multi-spectral satellite data for analysing the dynamics of different coastal landform features along the southern coastal Tamil Nadu of India. An integrated approach comprising visual image interpretation and maximum-likelihood supervised classification has been employed to classify the coastal landforms by using IRS data (during the period 1999–2006). The quality of image classification has been assessed by performing the accuracy assessments with the existing thematic maps and finally the coastal landforms have been mapped. The study reveals that the dynamics of coastal landforms such as sandy beaches, mud-flats, sand dunes and salt marshes along the study area are mostly influenced by the coastal processes, sediment transport, geomorphology and anthropogenic activities. Major anthropogenic sources for the perturbation of beach sediment budgets and a cause of beach erosion along the study area are excessive sand mining, removal of sand dunes, coastal urbanization, tourism and developmental activities.  相似文献   
4.
Sheik Mujabar  P.  Chandrasekar  N. 《Natural Hazards》2013,66(3):1295-1312
The measurement and recording of the height and spatial extent reached by coastal storm surges is fundamental to scientific progress in understanding these phenomena. Such information is required for better prediction and for risk assessment. Model-based evaluation of increasing delta vulnerability, for example, cannot be tested without long-term, consistent, and sustained observation of actual events. Also, storm surges occur within the temporal context of tidal variation, which must first be characterized through observation. Present standard approaches for measuring storm surges are not optimum. Thus, tidal gauges provide information at one point, whereas the heights reached by surges vary spatially. Also, post-surge ground surveys are expensive, laborious, and commonly lack comparison to similar data obtained for previous surges or for high tides. The advent of moderate spatial resolution, high temporal resolution remote sensing initiated by the launch of the two NASA MODIS sensors greatly reduces these constraints. For over a decade, daily coverage of most coastal land areas, though restricted by cloud cover, has systematically captured the maximum extents reached by both high tides and by storm surges. Automated water classification algorithms are now transforming the incoming image data into GIS water boundary files, again at daily or near-daily time steps. This paper provides a retrospective view of sample storm surges as mapped via these sensors and describes: (a) the present, MODIS-based surface water surveillance system, (b) the mapping enhancement to be provided by frequent-repeat, wide-swath satellite radar imaging, and (c) the emerging prospects for routine global surveillance of storm surge events. Such will be necessary if long-term trends are to be recognized, characterized, and understood, along coastal zones now being affected by both increasing subsidence and rising sea level.  相似文献   
5.
The shoreline is one of the rapidly changing landforms in coastal areas.They are the key element in coastal GIS and provide the most information on coastal land form dynamics.Therefore,accurate detection and frequent monitoring of shorelines is very essential to understand the coastal processes and dynamics of various coastal features.The present study is to investigate the shoreline changes along the coast between Kanyakumari and Tuticorin of south India(where hydrodynamic and morphologic changes occur continuously after the December 2004 tsunami)by using Digital Shoreline Analysis System(DSAS),an extension of ArcGIS.Multidate IRS and Landsat Satellite data(1999,2001,2003,2005,2007,and 2009)are used to extract the shorelines.The data is processed by using the ERDAS IMAGINE 9.1 software and analyzed by ArcGIS 9.2 workstation.The rates of shoreline changes are estimated by three statistical methods,namely,End Point Rate(EPR),Linear Regression Rate(LRR),and Least Me-dian of Squares(LMS)by using DSAS.The study reveals that most of the study area has undergoing erosion.Both natural and an-thropogenic processes along the coast modify the shoreline configuration and control the erosion and accretion of the coastal zones.The coastal zones along the estuary have experienced accretion due to the littoral processes.The zones with headlands have more eroded than other zones along the study area.The study also shows that the coastal zones where sand is mined have relatively more rate of erosion than that of the other zones.Improper and unsustainable sand mining may also lead to severe erosion problem along this area.The shoreline change rates are altered by various geological processes along the coast.Thus,the present study implies that proper beach filling and nourishment projects should be made in the study area to save from hazards.It also indicates the advantage and suitability of DSAS to assess the shoreline changes compared with the traditional manual shoreline change analysis and prom-ising its applications for coastal zone management in other regions.  相似文献   
6.
Handling and visualizing of beach profile data using visual programming provides better and more user-friendly effects to geologists, environmentalists, and policy makers. Several computer programs are available to visualize beach profile data. But in all programs, the raw field data cannot be used to calculate the sediment erosion and accretion. In this report, we describe the development of a simple piece of software BEACH using Visual Basic 6.0 that can store and analyze large volumes of profile survey data obtained from graduated pole or level surveys. The program precisely calculates the beach width, slope, and sediment volume above any user-specified datum. It also estimates the erosion and accretion made in a beach. This program is very useful for coastal zone management and environmental impact assessment studies.  相似文献   
7.
Mineral deposit mapping is very essential for sustainable and eco-friendly exploitation of natural resources. The Kingdom of Saudi Arabia has abundant natural resources such as natural gas, oil and minerals. It reserves high quantity of minerals such as phosphates, bauxites, copper, gold and other industrial minerals. The red soil regions located in Hail and Qassim provinces of Saudi Arabia have rich amount of bauxite (major aluminum ore) deposits. In order to initiate the focus on mapping of mineral deposits along this area, standardized hyper-spectral analysis has been carried out by using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite data. The spectral signature of gibbsite (major element in bauxite) samples is analyzed with reference to the spectral features of gibbsite in the visible near infrared and short-wave infrared bands electromagnetic spectrum. Advanced hyper-spectral transformations such as minimum noise fraction function and pixel purity index have been performed to identify the target end-member. The existence of the mineral is confirmed by comparing the spectral signatures of the end-member with the predefined spectral plots of ASTER and United States Geological Survey spectral libraries. Finally, the end-members are mapped and their abundance is estimated in 0–1 scale. The study has opened up new areas for mapping of bauxite deposits in the area and leads to eco-friendly exploitation of natural resources. It also validates the high potential of ASTER multispectral satellite data for the exploration and mapping of mineral resources.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号