首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1539篇
  免费   57篇
  国内免费   11篇
测绘学   58篇
大气科学   124篇
地球物理   347篇
地质学   490篇
海洋学   117篇
天文学   299篇
综合类   17篇
自然地理   155篇
  2022年   7篇
  2021年   16篇
  2020年   20篇
  2019年   30篇
  2018年   48篇
  2017年   27篇
  2016年   43篇
  2015年   34篇
  2014年   58篇
  2013年   107篇
  2012年   67篇
  2011年   73篇
  2010年   63篇
  2009年   91篇
  2008年   91篇
  2007年   81篇
  2006年   56篇
  2005年   62篇
  2004年   75篇
  2003年   64篇
  2002年   66篇
  2001年   50篇
  2000年   37篇
  1999年   34篇
  1998年   30篇
  1997年   23篇
  1996年   25篇
  1995年   19篇
  1994年   11篇
  1993年   13篇
  1992年   6篇
  1991年   10篇
  1990年   10篇
  1989年   9篇
  1988年   15篇
  1987年   5篇
  1986年   5篇
  1985年   13篇
  1984年   13篇
  1983年   18篇
  1982年   12篇
  1981年   5篇
  1980年   13篇
  1979年   9篇
  1978年   5篇
  1976年   7篇
  1975年   6篇
  1974年   4篇
  1972年   3篇
  1969年   3篇
排序方式: 共有1607条查询结果,搜索用时 31 毫秒
1.
Microbial degradation technologies have been developed to restore ground water quality in aquifers polluted by organic contaminants effectively in recent years. However, in course of the degradation, the formation of biofilms in ground water remediation technology can be detrimental to the effectiveness of a ground water remediation project. Several alternatives are available to a remedial design engineer, such as Permeable Reactive Barriers (PRBs) and in -situ bioremediation, Hydrogen Releasing Compounds (HRCs) barrier, Oxygen Releasing Compounds (ORCs) barrier etc. which are efficient and cost- effective technologies. Excessive biomass formation renders a barrier ineffective in degrading the contaminants, Efforts are made to develop kinetics models which accurately determine bio - fouling and bio - filn formation and to control excessive biomass formation.  相似文献   
2.
We present an analysis of X-ray and ultraviolet (UV) data of the dwarf nova VW Hyi that were obtained with XMM–Newton during the quiescent state. The X-ray spectrum indicates the presence of an optically thin plasma in the boundary layer that cools as it settles on to the white dwarf. The plasma has a continuous temperature distribution that is well described by a power law or a cooling flow model with a maximum temperature of 6–8 keV. We estimate from the X-ray spectrum a boundary layer luminosity of  8 × 1030 erg s-1  , which is only 20 per cent of the disc luminosity. The rate of accretion on to the white dwarf is  5 × 10−12 M yr−1  , about half of the rate in the disc. From the high-resolution X-ray spectra, we estimate that the X-ray emitting part of the boundary layer is rotating with a velocity of 540 km s−1, which is close to the rotation velocity of the white dwarf but is significantly smaller than the Keplerian velocity. We detect a 60-s quasi-periodic oscillation of the X-ray flux, which is likely to be due to the rotation of the boundary layer. The X-ray and the UV flux show strong variability on a time-scale of ∼1500 s. We find that the variability in the two bands is correlated and that the X-ray fluctuations are delayed by ∼100 s. The correlation indicates that the variable UV flux is emitted near the transition region between the disc and the boundary layer and that accretion rate fluctuations in this region are propagated to the X-ray emitting part of the boundary layer within ∼100 s. An orbital modulation of the X-ray flux suggests that the inner accretion disc is tilted with respect to the orbital plane. The elemental abundances in the boundary layer are close to their solar values.  相似文献   
3.
The Spectro-Polarimeter for Infrared and Optical Regions (SPINOR) is a new spectro-polarimeter that will serve as a facility instrument for the Dunn Solar Telescope at the National Solar Observatory. This instrument is capable of achromatic polarimetry over a very broad range of wavelengths, from 430 to 1600 nm, allowing for the simultaneous observation of several visible and infrared spectral regions with full Stokes polarimetry. Another key feature of the design is its flexibility to observe virtually any combination of spectral lines, limited only by practical considerations (e.g., the number of detectors available, space on the optical bench, etc.). Visiting Astronomers, National Solar Observatory, operated by the Association of Universities for Research in Astronomy, Inc. (AURA), under cooperative agreement with the National Science Foundation.  相似文献   
4.
QUEST on DASI is a ground-based, high-sensitivity, high-resolution (ℓmax2500) experiment designed to map CMB polarization at 100 and 150 GHz and to measure the power spectra from E-modes, B-modes from lensing of the CMB, and B-modes from primordial gravitational waves. The experiment comprises a 2.6 m Cassegrain optical system, equipped with an array of 62 polarization-sensitive bolometers (PSBs), located at the South Pole. The instrument is designed to minimize systematic effects; features include differencing of pairs of orthogonal PSBs within a single feed, a rotatable achromatic waveplate, and axisymmetric rotatable optics. In addition the South Pole location allows both repeatable and highly controlled observations. QUEST on DASI will commence operation in early 2005.  相似文献   
5.
Abstract— We present the results of irradiation experiments aimed at understanding the structural and chemical evolution of silicate grains in the interstellar medium. A series of He+ irradiation experiments have been performed on ultra‐thin olivine, (Mg,Fe)2SiO4, samples having a high surface/volume (S/V) ratio, comparable to the expected S/V ratio of interstellar dust. The energies and fluences of the helium ions used in this study have been chosen to simulate the irradiation of interstellar dust grains in supernovae shock waves. The samples were mainly studied using analytical transmission electron microscopy. Our results show that olivine is amorphized by low‐energy ion irradiation. Changes in composition are also observed. In particular, irradiation leads to a decrease of the atomic ratios O/Si and Mg/Si as determined by x‐ray photoelectron spectroscopy and by x‐ray energy dispersive spectroscopy. This chemical evolution is due to the differential sputtering of atoms near the surfaces. We also observe a reduction process resulting in the formation of metallic iron. The use of very thin samples emphasizes the role of surface/volume ratio and thus the importance of the particle size in the irradiation‐induced effects. These results allow us to account qualitatively for the observed properties of interstellar grains in different environments, that is, at different stages of their evolution: chemical and structural evolution in the interstellar medium, from olivine to pyroxene‐type and from crystalline to amorphous silicates, porosity of cometary grains as well as the formation of metallic inclusions in silicates.  相似文献   
6.
7.
Supercritical gas sorption on moist coals   总被引:2,自引:1,他引:1  
The effect of moisture on the CO2 and CH4 sorption capacity of three bituminous coals from Australia and China was investigated at 55 °C and at pressures up to 20 MPa. A gravimetric apparatus was used to measure the gas adsorption isotherms of coal with moisture contents ranging from 0 to about 8%. A modified Dubinin–Radushkevich (DR) adsorption model was found to fit the experimental data under all conditions. Moisture adsorption isotherms of these coals were measured at 21 °C. The Guggenheim–Anderson–de Boer (GAB) model was capable of accurately representing the moisture isotherms over the full range of relative pressures.Moist coal had a significantly lower maximum sorption capacity for both CO2 and CH4 than dry coal. However, the extent to which the capacity was reduced was dependent upon the rank of the coal. Higher rank coals were less affected by the presence of moisture than low rank coals. All coals exhibited a certain moisture content beyond which further moisture did not affect the sorption capacity. This limiting moisture content was dependent on the rank of the coal and the sorbate gas and, for these coals, corresponded approximately to the equilibrium moisture content that would be attained by exposing the coal to about 40–80% relative humidity. The experimental results indicate that the loss of sorption capacity by the coal in the presence of water can be simply explained by volumetric displacement of the CO2 and CH4 by the water. Below the limiting moisture content, the CO2 sorption capacity reduced by about 7.3 kg t− 1 for each 1% increase in moisture. For CH4, sorption capacity was reduced by about 1.8 kg t− 1 for each 1% increase in moisture.The heat of sorption calculated from the DR model decreased slightly on addition of moisture. One explanation is that water is preferentially attracted to high energy adsorption sites (that have high energy by virtue of their electrostatic nature), expelling CO2 and CH4 molecules.  相似文献   
8.
Olivine crystals were grown in the presence of a hydrous silicate fluid during multi-anvil experiments at 8 GPa and 1,000–1,600°C. Experiments were conducted both in a simple system (FeO–MgO–SiO2–H2O) and in a more complex system containing additional elements (CaO–Na2O–Al2O3–Cr2O3–TiO2–FeO–MgO–SiO2–H2O). Silica activity was buffered by the presence of either pyroxene (high a SiO2) or ferropericlase (low a SiO2), and was buffered by the presence of Ni + NiO or Fe + FeO, or constrained by the presence of Fe2O3. Raman spectroscopy was used to identify pyroxene polymorphs in the run products. Clinoenstatite was present in the 1,000°C experiment, and enstatite in experiments at 1,400–1,520°C. The H2O content of olivine was measured using secondary ion mass spectroscopy, and infrared spectroscopy was used to investigate the nature of hydrous defects. The H2O storage capacity of olivine decreases with increasing temperature at 8 GPa. In contrast to previous experimental results at ≤2 GPa, no significant effect of varying oxygen fugacity is evident, but H2O storage capacity is enhanced under conditions of low silica activity. No significant growth of low wavenumber (<3,400 cm−1) peaks, generally associated with high at low pressure, was observed in the FTIR spectra of olivine from the high experiments. Our experiments show that previous high pressure H2O storage capacity measurements for olivine synthesized under more oxidizing conditions than the Earth’s mantle are not likely to be compromised by the of the experiments. However, the considerable effect of temperature on H2O storage capacity in olivine must be taken into account to avoid overestimation of the bulk upper mantle H2O storage capacity.  相似文献   
9.
Understanding of isotopic variations in leaf water is important for reconstruction of paleoclimate and assessment of global biochemical processes. We report here a study of isotopic distributions within a single needle of two pine species, Pinus resinosa Ait and Pinus strobes L., with the objective of understanding how isotopic compositions of leaf water are controlled by environmental and physiological variables. A 2D model was developed to simulate along-leaf isotopic variations and bulk leaf water isotopic compositions. In addition to variables common to all leaf water isotopic models, this 2D model also takes into account the specific geometry and dimensions of pine needles and the isotopic transport in xylem and mesophyll. The model can successfully simulate oxygen isotopic variations along a single needle and averaged over a leaf (bulk leaf water). The simulations suggest that isotopic composition of the bulk leaf water does not always depend only upon the average transpiration rate, which in turn raises questions about using leaf water isotopic values to estimate transpiration rates. An unsuccessful attempt to simulate along-needle hydrogen isotopic variations suggests that certain unknown biological process(es) may not have been incorporated into our 2D model, and if so, it calls for a reevaluation of all other models for hydrogen isotopic simulations of leaf water since they too lack these processes.Existing leaf water isotopic models are reviewed in this work. In particular, we evaluate the most frequently used model, the stomatal boundary layer model (also referred to as the Craig-Gordon model). We point out that discrepancy between the boundary layer model and the measured bulk leaf water seems to depend upon relative humidity. Using our 2D model, we show that this humidity dependency is a result of an interplay between environmental and physiological conditions: if the transpiration rate of plant leaves decreases with increasing relative humidity, our 2D model can reproduce the pattern of isotopic discrepancy between boundary layer model predictions and observations, enabling us to understand better the reason behind this discrepancy.  相似文献   
10.
High levels of Cd and Zn in Jamaican soils observed in geochemical surveys are related to the presence of phosphorites of possible Late-Miocene or Pliocene age. The trace element and REE geochemistry of the phosphorites, together with SEM studies, indicate a guano origin for the phosphorites. No specific host minerals for Cd could be identified in the fossiliferous phosphorite which is characterized by uniquely high levels of Cd, Zn, Ag, Be, U and Y. However, in the soil Cd is present in lithiophorite and a complex history of pedological development is preserved in the aluminous–goethite present in the soil. The unique guano signature is preserved in the soil despite the fact that guanos themselves have either not been observed or have been destroyed by continuing karst and soil development. The phosphorite geochemical signature can be traced in the data of a 1988 island-wide soil geochemical survey, identifying areas where the Palaeo-environment that supported bird ‘rookeries’ existed in the Late-Miocene or Pliocene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号