首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   0篇
测绘学   10篇
地质学   11篇
海洋学   1篇
天文学   8篇
  2022年   3篇
  2020年   1篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2011年   4篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2003年   1篇
  1993年   1篇
排序方式: 共有30条查询结果,搜索用时 31 毫秒
1.
A new version of the Optical Characteristics of Astrometric Radio Sources (OCARS) catalog is presented. The catalog includes a list of radio sources observed in astrometric and geodetic VLBI programs since 1979, their redshifts, photometric data in 13 bands in the visible and near infrared, and a table indicating identifications btween the OCARS objects and objects in other catalogs. The main sources of information for the OCARS catalog are the NED and SIMBAD databases, as well as a variety of publications. Targeted observing programs designed to supplement the optical data for the astrometric radio sources have also been organized. The catalog currently contains 9956 sources, of which 5449 have redshifts and 7473 have photometric data. The catalog is updated, on average, once every several weeks, and is continuously augmented with new sources and new optical data.  相似文献   
2.
Study of astronomical and geodetic series using the Allan variance   总被引:1,自引:0,他引:1  
Recently, the Allan variance (AVAR), suggested more than 40 years ago to describe the instability of frequency standards, has been used extensively to study various time series in astrometry, geodesy, and geodynamics. This method makes it possible to effectively study the characteristics of the noise component of data, such as the change of location of stations, coordinates of radio sources, etc. Moreover, AVAR may be used to study the spectral and fractal structure of this noise component. To handle unequal and multivariate observations, which are characteristic of many astronomical and geodetic applications, the author suggests appropriate AVAR modifications. A brief overview of classical and modified AVAR in astrometry and geodynamics is given.  相似文献   
3.
VLBI observations carried out by global networks provide the most accurate values of the precession-nutation angles determining the position of the celestial pole; as a rule, these results become available two to four weeks after the observations. Therefore, numerous applications, such as satellite navigation systems, operational determination of Universal Time, and space navigation, use predictions of the coordinates of the celestial pole. In connection with this, the accuracy of predictions of the precession—nutation angles based on observational data obtained over the last three years is analyzed for the first time, using three empiric nutation models-namely, those developed at the US Naval Observatory, the Paris Observatory, and the Pulkovo Observatory. This analysis shows that the last model has the best of accuracy in predicting the coordinates of the celestial pole. The rms error for a one-month prediction proposed by this model is below 100 microarcsecond.  相似文献   
4.
We present the results of processing the VLBI observations performed at the Svetloe Observatory of the Institute of Applied Astronomy (IAA), Russian Academy of Sciences, in the period 2003–2005 within the framework of geodynamical programs of the International VLBI Service (IVS) for geodesy and astrometry. We analyzed the observations at the Svetloe Observatory, together with the observations at other stations of the global IVS network, at the IAA using a modified OCCAM package. The package uses new reduction models that decrease the systematic errors of the results. The motion of the stations, primarily of the Svetloe Observatory, is investigated to study the global geotectonic processes. Highly accurate estimates of the coordinate and baseline length variations have been obtained for the first time in Russia from observations at a Russian VLBI station. We determined the coordinates and velocity of the Svetloe VLBI station with errors of ~2 mm and 3 mm yr?1, respectively, and the baseline lengths between the stations with a sufficiently long observational history with an accuracy of 1–3 mm. The results are shown to be in good agreement with currently available models for the motion of tectonic plates.  相似文献   
5.
Impact of seasonal station motions on VLBI UT1 intensives results   总被引:1,自引:1,他引:0  
UT1 estimates obtained from the very long baseline interferometry (VLBI) Intensives data depend on the station displacement model used during processing. In particular, because of seasonal variations, the instantaneous station position during the specific intensive session differs from the position predicted by the linear model generally used. This can cause systematic errors in UT1 Intensives results. In this paper, we first investigated the seasonal signal in the station displacements for the 5 VLBI antennas participating in UT1 Intensives observing programs, along with the 8 collocated GPS stations. It was found that a significant annual term is present in the time series for most stations, and its amplitude can reach 8 mm in the height component, and 2 mm in horizontal components. However, the annual signals found in the displacements of the collocated VLBI and GPS stations at some sites differ substantially in amplitude and phase. The semiannual harmonics are relatively small and unstable, and for most stations no prevailing signal was found in the corresponding frequency band. Then two UT1 Intensives series were computed with and without including the seasonal term found in the previous step in the station movement model. Comparison of these series has shown that neglecting the seasonal station position variations can cause a systematic error in UT1 estimates, which can exceed 1  $\upmu $ s, depending on the observing program.  相似文献   
6.
The International VLBI Service for Geodesy and Astrometry (IVS) regularly produces high-quality Earth orientation parameters from observing sessions employing extensive networks or individual baselines. The master schedule is designed according to the telescope days committed by the stations and by the need for dense sampling of the Earth orientation parameters (EOP). In the pre-2011 era, the network constellations with their number of telescopes participating were limited by the playback and baseline capabilities of the hardware (Mark4) correlators. This limitation was overcome by the advent of software correlators, which can now accommodate many more playback units in a flexible configuration. In this paper, we describe the current operations of the IVS with special emphasis on the quality of the polar motion results since these are the only EOP components which can be validated against independent benchmarks. The polar motion results provided by the IVS have improved continuously over the years, now providing an agreement with IGS results at the level of 20–25 \(\upmu \)as in a WRMS sense. At the end of the paper, an outlook is given for the realization of the VLBI Global Observing System.  相似文献   
7.
Malkin  Z. M.  Tissen  V. M. 《Astronomy Reports》2022,66(1):75-79
Astronomy Reports - Improvement of the prediction accuracy of the Earth’s rotation parameters (ERP) is one of the main problems of applied astrometry. In order to solve this problem, various...  相似文献   
8.
During close angular approaches of solar system planets to astrometric radio sources, the apparent positions of these sources shift due to relativistic effects and, thus, these events may be used for testing the theory of general relativity; this fact was successfully demonstrated in the experiments on the measurements of radio source position shifts during the approaches of Jupiter carried out in 1988 and 2002. An analysis, performed within the frames of the present work, showed that when a source is observed near a planet’s disk edge, i.e., practically in the case of occultation, the current experimental accuracy makes it possible to measure the relativistic effects for all planets. However, radio occultations are fairly rare events. At the same time, only Jupiter and Saturn provide noticeable relativistic effects approaching the radio sources at angular distances of about a few planet radii. Our analysis resulted in the creation of a catalog of forthcoming occultations and approaches of planets to astrometric radio sources for the time period of 2008–2050, which can be used for planning experiments on testing gravity theories and other purposes. For all events included in the catalog, the main relativistic effects are calculated both for ground-based and space (Earth-Moon) interferometer baselines.  相似文献   
9.
The EUREF [International Association of Geodesy (IAG) Reference Frame Sub-Commission for Europe] network of continuously operating GPS stations (EPN) was primarily established for reference frame maintenance, and also plays an important role for geodynamical research in Europe. The main objective of this paper is to obtain an independent homogeneous time series of the EPN station coordinates, which is also available in SINEX format. A new combined solution of the EPN station coordinates was computed. The combination was performed independently for every week, in three steps: (1) the stated constraints on the coordinates were removed from the individual solutions of the Analysis Centers; (2) the de-constrained solutions were aligned to ITRF2000; (3) the resulting solutions were combined using the Helmert blocking technique. All the data from GPS weeks 900 to 1302 (April 1997–December 2004) were used. We investigated in detail the behavior of the transformation parameters aligning the new combined solution to ITRF2000. In general, the time series of the transformation parameters show a good stability in time although small systematic effects can be seen, most likely caused by station instabilities. A comparison of the new combined solution to the official EUREF weekly combined solution is also presented.  相似文献   
10.
In this paper, a new geometry index of very long baseline interferometry (VLBI) observing networks, the volume of network V, is examined as an indicator of the errors in the Earth orientation parameters (EOP) obtained from VLBI observations. It has been shown that both EOP precision and accuracy can be well described by the power law σ = aV c in a wide range of the network size from domestic to global VLBI networks. In other words, as the network volume grows, the EOP errors become smaller following a power law. This should be taken into account for a proper comparison of EOP estimates obtained from different VLBI networks. Thus, performing correct EOP comparison allows us to investigate accurately finer factors affecting the EOP errors. In particular, it was found that the dependence of the EOP precision and accuracy on the recording data rate can also be described by a power law. One important conclusion is that the EOP accuracy depends primarily on the network geometry and to lesser extent on other factors, such as recording mode and data rate and scheduling parameters, whereas these factors have a stronger impact on the EOP precision.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号