首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
大气科学   10篇
地质学   1篇
  2023年   3篇
  2022年   2篇
  2008年   3篇
  2007年   2篇
  2006年   1篇
排序方式: 共有11条查询结果,搜索用时 15 毫秒
1.
利用架设在珠峰北坡4475m高度处的一套开路涡动协方差测量系统,对曲宗地区的大气状况进行了连续观测.分析了近地层气象要素、辐射平衡各分量和能量平衡各分量在高原雨季前(5月),雨季中(7月)和雨季后(11月)的变化特征.通过分析,发现曲宗地区气温和相对湿度日平均变化均呈单峰单谷型特征,气压则呈双峰双谷型特征,风速日变化为单峰型特征,风速一般在午后突然增大.伴随着雨季的爆发,曲宗地区气温升高,相对湿度增大,气压升高,风速减小.主导风向由东北风转换成西南风.雨季前后,辐射平衡各分量及能量平衡各分量均具有明显的变化趋势.  相似文献   
2.
三江源作为中国长江、黄河、澜沧江三条大河的发源地,其水汽来源和输送对于下游地区的天气和气候具有重要影响。根据1994-2019年三江源地区的夏季降水数据表明,三江源地区的夏季7月降水量表现为多次的正负异常交换特征,正异常最强的为2012年(+1290 mm),负异常最强的为2015年(-802 mm)。本研究在此异常时段采用基于拉格朗日方法的FLEXPART模式进行模拟,后向追踪在研究时段内所有到达三江源区域的气块,着重分析了三江源在降水异常时段的水汽输送特征和水汽源地并评估了不同水汽源地对三江源区域内降水的贡献率。结果表明:三江源的水汽输送通道主要为南北两支,在降水正异常时段通过南支输送从青藏高原北侧、西侧和南侧进入三江源为主,在降水负异常时段通过北支输送从青藏高原北侧进入三江源为主,三江源的降水量越小,南支输送越弱,北支输送越强。三江源的潜在水汽源地对三江源区域内降水贡献最为重要的是青藏高原北侧,其次是青藏高原西侧和三江源本地,还有部分源地为青藏高原南侧、阿拉伯海和孟加拉湾。青藏高原北侧在三江源降水负异常期间对三江源降水的贡献率有所增加,而其他水汽源地的贡献率减小。  相似文献   
3.
青藏高原纳木错湖区大气边界层结构分析   总被引:8,自引:3,他引:5  
利用2007年8月8~19日期间系留气球低探空和GPS无线电探空资料,分析了纳木错湖区大气边界层高度、风、温、湿等要素的垂直结构。结果表明:纳木错湖的冷湖效应推迟了边界层湍流混合及对流边界层出现的时间,边界层高度日变化非常明显,对流边界层高度最高可达1750 m;在晴天条件下,边界层内湖陆风日变化非常明显,湖陆风控制范围常超过边界层高度,可达对流层中部;边界层内比湿变化呈V型变化,白天减小,夜间增大,早晨08:00出现峰值。  相似文献   
4.
选用由美国国家环境预报中心NCEP和美国国家大气研究中心NCAR联合开发的新一代中尺度数值模式WRF(Weather Research and Forecasting Model)模式,采用两重网格单向反馈嵌套的方法对扎陵湖和鄂陵湖区域的大气边界层特征进行数值模拟,并把湖泊水体下垫面替换为草地下垫面以设计另一组去除湖泊...  相似文献   
5.
纳木错湖地区近地层微气象特征及地表通量交换分析   总被引:3,自引:0,他引:3  
利用中国科学院青藏高原研究所纳木错圈层相互作用综合观测研究站2006年全年的观测资料,研究了青藏高原纳木错地区的草甸下垫面气温、湿度、风速、风向和地表温度的日变化及季节变化规律,并研究了地表感热、潜热通量和辐射通量的日变化和季节变化规律,初步揭示了纳木错地区草甸下垫面微气象特征和地气能量交换的一般规律。  相似文献   
6.
夏季青海湖局地环流及大气边界层特征的数值模拟   总被引:5,自引:8,他引:5  
使用美国NCAR新版MM5V3.6非静力模式,采用两重嵌套方法,模拟了青海湖区域的局地环流及大气边界层特征,并且与无湖试验进行了比较。结果表明:白天由于青海湖的存在有很好的降温作用,夜晚则有保温效应,表现出明显的冷(暖)湖效应;青海湖对感热和潜热的影响有很强的日变化,白天湖面感热、潜热都小,夜间情况相反,这使得白天青海湖是冷干岛,夜间是暖湿岛;青海湖使得白天湖面边界层顶低,陆面边界层顶高,夜间相反。这样的边界层顶高度和温度、地面能量通量相配合,形成了一个很好的保护机制,对青海湖的水土保持和生态环境的维持有正效应;青海湖使得湖面上空大气下沉,陆面上空大气上升,从而产生了湖面上空大气冷干,陆面上空大气暖湿的边界层特征;青海湖边缘的陆面形成的较大的湿气柱围绕着湖面,起到了保护湖面的作用;青海湖低空白天有明显的湖面向四周的辐散气流,而夜间则为从北偏东方向来的陆风。  相似文献   
7.
气候变暖对北极多年冻土和植被产生了重要的影响。CLM(Community Land Model)是应用最广泛的陆面过程模式之一,但其中复杂的边界条件和参数化过程导致模式模拟结果存在一定的不确定性。本研究评估了CLM5.0对阿拉斯加多年冻土区表层土壤温度和碳循环的模拟能力,结果表明,CLM5.0可以捕捉到表层土壤温度的季节变化。在苔原和针叶林站点,CLM5.0在日尺度和月尺度都可以很好地模拟出总初级生产力(GPP)随时间的变化,但对净生态系统碳交换(NEE)的模拟结果存在一定的不确定性。CLM5.0可以较为合理地模拟高纬度多年冻土区的土壤温度季节变化,在未来的研究中可能还需要从结构、参数化方案等过程进行改进,从而进一步提升高纬度多年冻土区碳循环的模拟精度。  相似文献   
8.
围栏封育作为直接有效的退化草地恢复治理模式,广泛应用于青藏高原退化草地恢复。围栏封育显著提升植被覆盖并改变地表与大气之间的水热交换,然而当前对其如何影响高寒生态系统水热通量的定量研究不足,缺乏对影响机制的认识。本研究以藏北腹地典型高寒湿地和高寒草原为研究对象,采用涡度相关技术开展禁牧-放牧配对观测,并基于围栏内外2019年7月至2021年6月连续两年的观测数据,探究围栏封育后的地表水热平衡变化,以提升对围栏封育改变地表水热通量机制的认知。结果显示:高寒草原和高寒湿地生态系统水热通量均表现出明显的单峰型日变化特征,且分别以感热作用(波文比为1.60)、潜热作用(波文比为0.31)为主导向大气传输能量。围栏封育降低了高寒草原地表通量值,感热通量减小5.99 W·m-2,潜热通量减小4.84 W·m-2;围栏封育提升了高寒湿地的地表通量值,感热通量增加3.04 W·m-2,潜热通量增加30.95 W·m-2,围栏封育后高寒草原感热通量和潜热通量日均值均下降,高寒湿地则增加。围栏封育对地表能量通量影响强度集...  相似文献   
9.
中国西南地区常年气候湿润,但近年来该地频繁发生的干旱灾害造成了诸如农作物减产、森林火灾等巨大经济损失。为了深入探索西南地区干旱年份水汽输送的异常,并为今后西南地区干旱灾害的预警提供参考,本文利用TRMM和APHRODITE两种降水数据,分析了1998-2019年西南地区降水的年际变化及各季节降水量的年际变化,选出夏季干旱年(2011年)和秋季干旱年(2009年)以及夏季秋季都较为湿润的2008年,通过拉格朗日输送模型FLEXPART追踪了两个极端干旱季节(2009年秋季和2011年夏季)的水汽输送路径及水汽源地,并分别与湿润年份(2008年)的夏季和秋季做了对比分析。结果表明:(1)干湿年份的水汽输送路径一致,夏季西南地区的水汽输送路径主要可分为3条:西南路径、东南路径和西北路径,其中最主要的是西南路径,故主要的水汽源地为阿拉伯海-孟加拉湾一带;秋季西南地区的水汽输送的主要路径可分为两条:东南路径和西北路径,其中最主要的是东南路径,故主要的水汽源地为我国南海-太平洋西北部一带。(2)干湿年份水汽输送强弱存在差异,夏季西南地区干旱的原因是西南路径对水汽的输送较弱,而秋季西南地区干旱的原因...  相似文献   
10.
吕雅琼  巩远发 《高原气象》2006,25(2):195-202
利用NCEP/NCAR再分析资料,计算了2001及2003年青藏高原及其附近地区的大气热源(汇),再用CEOF方法分析了它俩的异同。结果表明:(1)该两年冬夏季节转换前的4月份,热源(汇)分布相似,强度不同;季节转换后的6月份,热源(汇)分布明显不同,强度也有很大差异;(2)该两年分别在青藏高原南侧到孟加拉湾北部和阿拉伯海东部到印度半岛西侧各有一个高值中心,但强度明显不同:表现为2001年夏季孟加拉湾地区的热源强度明显比阿拉伯海地区强,2003年夏季则相反;(3)两年季节转换期间的5月到6月下旬期间,高原及其南侧的热源变化趋势也是不同的。2003年6月下旬达最强值;2001年则是5月中下旬到6月初已达到较强,到6月下旬又突然减弱;(4)该两年第一特征向量的空间位相上也是不同的。在2001年,印度半岛中部是晚位相中心,其四周的位相都相对较早,位相差近180°,因此印度半岛大部与其周围的大气热源(汇)有近似相反的变化趋势;而在2003年情况则有所不同,印度半岛与其两侧的阿拉伯海和孟加拉湾北部仅是一个相对高晚位相区,其西北部和南端是晚位相中心,高原南部和赤道附近的洋面上是早位相区。因此,在2003年的大气热源(汇)变化趋势与2001年有明显的不同。2001及2003年夏季青藏高原及其附近地区大气热源(汇)的这些差异可能正是影响我国江淮地区严重干旱/洪涝的原因之一。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号