首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   2篇
大气科学   18篇
地球物理   1篇
地质学   9篇
海洋学   6篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2012年   1篇
  2006年   1篇
  2003年   1篇
  2000年   8篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1995年   3篇
  1992年   2篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1978年   2篇
  1974年   1篇
排序方式: 共有34条查询结果,搜索用时 33 毫秒
1.
The concentration of carbon disulfide (CS2) in surface water and relevant hydrographic parameters were determined in coastal waters of the eastern USA (Delaware Bay and Chesapeake Bay, including the Potomac River; 7–11 September 1986). The CS2 concentration varied extensively along the cruise track, from 4 to 510 pmol S(CS2) l−1 (n = 103). The average values in estuarine, shelf, and oceanic waters were found to be 118 ± 100 pmol S(CS2) l−1 (n = 54), 51 ± 34 pmol S(CS2) l−1 (n = 14), and 28 ± 12 pmol S(CS2) l−1 (n = 35), respectively. To help interpret the geochemical behavior of CS2, we analyzed the depth distribution of CS2 in the North Atlantic Ocean during an earlier cruise (23 April–2 May 1986). In most cases, these depth profiles show a near-surface maximum at about 10–20 m depth and a relatively steep gradient below this maximum. Based on the distribution pattern in the water column and evidence provided by earlier workers, we propose that diffusion of CS2 from bottom sediments may contribute to CS2 levels in surface seawater. The atmospheric concentration of CS2 was also investigated at some locations during the September cruise. Except during periods when there was a significant anthropogenic input, the concentration of CS2 in air was generally in the range of 4–15 pptv (parts per trillion by volume) with a mean of 10.4 ± 4.0 pptv (n = 10). The calculated sea-to-air emission rates of CS2 at each of our sampling stations show a decreasing trend across estuarine, shelf, and oceanic areas, in agreement with the trend in surface water concentrations.  相似文献   
2.
FOS/DECAFE 91 (Fire of Savannas/Dynamique et Chimie Atmosphérique en Forêt Equatoriale) was the first multidisciplinary experiment organized in Africa to determine gas and aerosol emissions by prescribed savanna fires. The humid savanna of Lamto in Ivory Coast was chosen for its ecological characteristics representative of savannas with a high biomass density (900 g m–2 dry matter). Moreover the vegetation and the climate of Lamto have been studied for more than twenty years. The emission ratios (X/CO2) of the carbon compounds (CO2, CO, NMHC, CH4, PAH, organic acids and aerosols), nitrogen compounds (NOx, N2O, NH3 and soluble aerosols) and sulfur compounds (SO2, COS and aerosols) were experimentally determined by ground and aircraft measurements. To perform this experiment, 4 small plots (100×100 m) and 2 large areas (10×10 km) were prepared and burnt in January 1991 during the period of maximum occurrence of fires in this type of savanna. The detailed ecological study shows that the carbon content of the vegetation is constant within 1% (42 g C for 100 g of vegetal dry matter), the nitrogen content (0.29 g N for 100 g of dry matter) may vary by 10% and the sulfur content (0.05 g S/100 d.m.) by 20%. These variations of the biomass chemical content do not constitute an important factor in the variation of the gas and particle emission levels. With the emission ratios characteristic of humid savanna and flaming conditions (CO/CO2 of 6.1% at the ground and 8% for airborne measurements), we propose a set of new emission factors, taking into account the burning efficiency which is about 80%: 74.4% of the carbon content of the savanna biomass is released to the atmosphere in the form of CO2, 4.6% as CO, 0.2% as CH4, 0.5% as NMHC and 0.7% as aerosols. 17.2% of the nitrogen content of the biomass is released as NOx, 3.5% as N2O, 0.6% as NH3 and 0.5% as soluble aerosols.  相似文献   
3.
Ozone has been observed in elevated concentrations by satellites over areas previously believed to be background. There is meteorological evidence, that these ozone plumes found over the Atlantic Ocean originate from vegetation fires on the African continent.In a previous study (DECAFE-88), we have investigated ozone and assumed precursor compounds over African tropical forest regions. Our measurements revealed large photosmog layers at altitudes from 1.5 to 4 km. Both chemical and meteorological evidence point to savanna fires up to several thousand km upwind as sources.Here we describe ozone mixing ratios observed over western Africa and compare ozone production ratios from different field measurement campaigns related to vegetation burning. We find that air masses containing photosmog ingredients require several days to develop their oxidation potential, similar to what is known from air polluted by emissions from fossil fuel burning. Finally, we estimate the global ozone production due to vegetation fires and conclude that this source is comparable in strength to the stratospheric input.  相似文献   
4.
It has been made clear that the minimum cost combination in agriculture varies greatly from country to country and must change considerably from phase to phase in the course of national economic development. The criteria according to which the minimum cost combinations of the different developing countries tend to change vary greatly, depending on whether the countries in question were initially sparsely or densely populated. It also follows that in developing countries with varying economic structures the technical progress made will also vary in importance. It is easy to see from what has been said that progress in the mechanical field will be of greatest profit to thinly populated agricultural countries, while the future development of overpopulated agricultural countries will receive most benefit from progress in the field of organic sciences.  相似文献   
5.
The results of 2-year (2010–2012) measurements of the concentrations of organic carbon (OC) and elemental carbon (EC), which were taken at the Zotino Tall Tower Observatory (ZOTTO) Siberian background station (61° N, 89° E), are given. Despite the fact that this station is located far from populated areas and industrial zones, the concentrations of OC and EC in the atmosphere over boreal forests in central Siberia significantly exceed their background values. In winter and fall, high concentrations of atmospheric carbonaceous aerosol particles are caused by the long-range transport (~1000 km) of air masses that accumulate pollutants from large cities located in both southern and southwestern regions of Siberia. In spring and summer, the pollution level is also high due to regional forest fires and agricultural burning in the steppe zone of western Siberia in the Russian–Kazakh border region. Background concentrations of carbonaceous aerosol particles were observed within relatively short time intervals whose total duration was no more than 20% of the entire observation period. In summer, variations in the background concentrations of OC closely correlated with air temperature, which implies that the biogenic sources of organic-particle formation are dominating.  相似文献   
6.
During the 1st Lagrangian experiment of the North Atlantic Regional Aerosol Characterisation Experiment (ACE‐2), a parcel of air was tagged by releasing a smart, constant level balloon into it from the Research Vessel Vodyanitskiy . The Meteorological Research Flight's C‐130 aircraft then followed this parcel over a period of 30 h characterising the marine boundary layer (MBL), the cloud and the physical and chemical aerosol evolution. The air mass had originated over the northern North Atlantic and thus was clean and had low aerosol concentrations. At the beginning of the experiment the MBL was over 1500 m deep and made up of a surface mixed layer (SML) underlying a layer containing cloud beneath a subsidence inversion. Subsidence in the free troposphere caused the depth of the MBL to almost halve during the experiment and, after 26 h, the MBL became well mixed throughout its whole depth. Salt particle mass in the MBL increased as the surface wind speed increased from 8 m s−1 to 16 m s−1 and the accumulation mode (0.1μm to 3.0 μm) aerosol concentrations quadrupled from 50 cm−3 to 200 cm−3. However, at the same time the total condensation nuclei (>3 nm) decreased from over 1000 cm−3 to 750 cm−3. The changes in the accumulation mode aerosol concentrations had a significant effect on the observed cloud microphysics. Observational evidence suggests that the important processes in controlling the Aitken mode concentration which, dominated the total CN concentration, included, scavenging of interstitial aerosol by cloud droplets, enhanced coagulation of Aitken mode aerosol and accumulation mode aerosol due to the increased sea salt aerosol surface area, and dilution of the MBL by free tropospheric air.  相似文献   
7.
Atmospheric and dissolved methane (CH4) and nitrous oxide (N2O) were measured in the unique coastal ecosystem of theBoddenwaters, including the western Oder estuary, (southern Baltic Sea) during five campaigns between 1994 and 1997. The CH4saturations, ranging from 105–15 500%, showed great spatial and temporal variability with maximum values in September and minimum values in December. The N2O saturations were in the range of 91–312% with a maximum in March. Enhanced concentrations of both gases were observed only in the western Oder estuary near the mouth of the Peene River. Thus, we conclude that the distributions of CH4and N2O in the investigatedBoddenwaters are, directly or indirectly, linked to the Peene River runoff and not to the Oder River. Our estimate of the annual CH4emissions from theBoddenwaters to the atmosphere indicates a significant contribution (c. 17%) to the overall CH4emissions from the Baltic Sea. In contrast, theBoddenwaters represent only a small source for atmospheric N2O.CH4production rates estimated from sediment slurry experiments revealed a significant spatial variability and indicated that methanogenic activity was related to acetate consumption in the surface sediment layer. Sedimentary CH4production might depend on different amounts of accumulation of organic material.  相似文献   
8.
Carbonyl sulfide (COS) mixing ratioswere measured in the marine atmosphere and in airequilibrated with surface sea water during severalcruises in the North Sea and western NorthAtlantic. In April 1994, North Sea waters weresupersaturated with respect to the atmosphere,resulting in oceanic emissions of COS. Saturationratios varied between the equilibrium value of one inthe central North Sea and high values of >15 in theElbe Estuary. We observed weak diel cycles of surfacewater COS during a three day drift station. During theunderway parts of the cruise, diel COS variations weremasked by the high geographical variability of COSconcentrations in the German Bight. In August 1994, weobserved a pronounced diel cycle of COS off theFlorida coast with saturation ratios varying betweenthe equilibrium value of one in the early morning andmaximum values of four to five in the afternoon. InMarch 1995, we found COS supersaturation as well asextensive undersaturation in the western NorthAtlantic between Norfolk, VA, and Bermuda. Suchundersaturation in marine surface waters results inregional and seasonal uptake of atmospheric COS. Basedon our data and those of other researchers, weestimate the global oceanic COS net emission to bebetween 1.3 and 2.5 Gmol yr-1. This estimate is significantly smaller than previous ones which had notconsidered the possibility of COS uptake by theoceans. COS hydrolysis in the ocean has a significantinfluence on the atmospheric turnover time of COS,which we estimate to be 5.7 yr. This may contribute tothe lack of an observable increase in atmospheric COSlevels despite substantial anthropogenic emissions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
9.
Formic and acetic acids were measured in a scrub-grass savanna and in a nearby semideciduous forest. Gaseous HCOOH and CH3COOH were collected using the mist-scrubber technique, and were determined using ion chromatography. A strong diurnal cycle was observed at both sites, with higher mixing ratios during daytime. Concentrations in the savanna were always higher than in the forest. Most of the time HCOOH/CH3COOH ratios greater than one were recorded at the savanna site, and ratios less than one at the forest site. Boundary-layer mixing ratios in the savanna region, derived from measurements during midday, are 1.3±0.4 ppbv and 0.7±0.3 ppbv for HCOOH and CH3COOH. Dry depositions velocities between 0.5 and 1 cm s-1 were estimated for the savanna region. Atmospheric residence times of <3 days and >5 days were estimated for the rainy and dry season, respectively.  相似文献   
10.
The second Aerosol Characterisation Experiment (ACE‐2) was aimed at investigating the physical, chemical and radiative properties of aerosol and their evolution in the North Atlantic region. In the 2nd "Lagrangian" experiment, an air mass was tracked over a 30‐h period during conditions of extensive stratocumulus cover. Boundary‐layer measurements of the aerosol size distribution obtained with a passive cavity aerosol spectrometer probe (PCASP) during the experiment show a gradual growth in size of particles in the 0.1–0.2 μm diameter mode. Simultaneously, SO2 concentrations were found to decrease sharply from 800 to 20 ppt. The fraction of sulphate in aerosol ionic mass increased from 0.68±0.07 to 0.82±0.09 for small particles (diameter below 1.7 μm) and from 0.21±0.04 to 0.34±0.03 for large particles (diameter above 1.7 μm). The measurements were compared with a multicyclic parcel model of gas phase diffusion into cloud droplets and aqueous phase chemical reactions. The model was able to broadly reproduce the observed transformation in the aerosol spectra and the timescale for the transformation of SO2 to sulphate aerosol. The modelled SO2 concentration in the boundary layer fell to below half its initial value over a 6.5‐h time period due to a combination of the entrainment of cleaner tropospheric air and cloud chemical reactions. NH3 and HCl gas were also found to play an important rôle in cloud processing in the model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号