首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
大气科学   4篇
  2013年   4篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Abstract

The linearized non‐divergent barotropic vorticity equation in one dimension is used for the study of a problem associated with the specification of lateral boundaries in limited area models. This problem presents itself in the form of a “pillow” that builds up near the inflow boundary of the model. Linear analysis shows that this pillow can easily be eliminated. Linear integrations carried out with a corrector seem to be reasonably accurate.

Similar integrations with the linearized shallow water equations in one dimension also produce a pillow and the same corrector gives improved results. Additional runs are performed in order to show that some commonly used nesting strategies do not control this computational problem in a satisfactory manner. It seems that these strategies could be improved with an appropriate corrector.  相似文献   
2.
Abstract

Numerical simulation experiments published in 1974 by Daley have been repeated with a much higher resolution, spectral, shallow water model. With a forecast period extending toll d, it is shown that a global model in which only the largest scales are used at initial time in the Southern Hemisphere yields a more accurate forecast for the Northern Hemisphere than a hemispheric model does. Compared with a uniform high‐resolution, global model, the error in the Northern Hemisphere forecast is high in the ultra‐long waves but decreases rather rapidly while the resolution of the initial Southern Hemispheric data is increased.  相似文献   
3.
Abstract

Inaccuracies in the data at the boundaries of a limited area may be a major source of forecast errors in that area. With a global spectral shallow water model we show that the major part of these local errors propagate from the boundaries at a speed equal to the local wind speed with a maximum speed of propagation along the jet stream. Thus, taking into account the forecast length and the accuracy of the data at the boundaries in limited‐area models, one needs to adjust the extent of the buffer region where errors propagate and contaminate the forecast.  相似文献   
4.
E. Yakimiw 《大气与海洋》2013,51(3):260-280
Résumé

Nous présentons les résultats d'une expérience numérique concernant la sensibilité d'un modèle de prévisions atmosphériques. Cette expérience a consisté à pertuber les conditions initiales dans le golfe de l'Alaska et à comparer les prévisions de cinq jours obtenues à partir des mêmes conditions initiales avec et sans perturbation. La perturbation introduite dans la fonction de courant est une dépression à symétrie radiale, d'environ 2000 km de rayon et de valeur centrale maximum de ‐10 dam. Le modèle utilisé est un modèle spectral barocline à cinq niveaux, tronqué “rhomboïdalement” à 20 ondes. La même perturbation a été introduite à tous les niveaux.

Nous avons trouvé, que, dans ce modèle, 1. la vitesse de propagation de la majeure partie de l'erreur moyenne et de l'écart type était égale à tous les niveaux, compte tenu de la marge d'erreur, et ne semble pas être directement reliée à la vitesse zonale moyenne. Elle vaut 18 ± 2ms‐1.

2. la vitesse de propagation des centres d'erreur moyenne et d'écart type est plus faible. Elle est voisine de 12 ±2 m s‐1 independamment du niveau.

3. l'intensité de l'erreur moyenne et de l'écart type augmente avec la hauteur provoquant ainsi un déplacement vers l'est plus rapide du contour de 1 dam de cette erreur ou de cet écart. Cette vitesse est de 20 m s‐1 à la 85 kPa, 33 m s‐1 à la 50 kPa et 37 m s‐1 à la 20 kPa. En moyenne, cette vitesse est 50% supérieure à la vitesse zonale moyenne du niveau. Au cinquième jour, la valeur du centre initial de l'écart type ne dépasse pas 4 dam tandis que d'autres centres se sont formés à l'avant pendant la période de prévision et valent entre 4 et 11 dam selon le niveau.

4. l'écart type total de l'hémisphère décroît plus ou moins rapidement au début de la période de prévision en fonction de la hauteur. Cet écart double ensuite sur une période de 2¼ jours à partir de 36 h à la 20 kPa, à partir de 60 h à la 50 kPa et à partir de 72 h à la 85 kPa, jusqu'à la fin de la période de prévision.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号