首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   68篇
  免费   4篇
测绘学   3篇
大气科学   3篇
地球物理   22篇
地质学   18篇
海洋学   18篇
天文学   4篇
综合类   2篇
自然地理   2篇
  2023年   1篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   3篇
  2016年   6篇
  2015年   4篇
  2014年   2篇
  2013年   3篇
  2012年   2篇
  2011年   3篇
  2010年   4篇
  2009年   3篇
  2008年   6篇
  2007年   2篇
  2006年   1篇
  2005年   6篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  2000年   3篇
  1997年   2篇
  1995年   2篇
  1993年   1篇
  1991年   1篇
  1986年   1篇
  1985年   1篇
  1968年   1篇
排序方式: 共有72条查询结果,搜索用时 156 毫秒
1.
2.
Downward fluxes of microbial assemblages associated with sinking particles sampled in sediment traps deployed at nominal depths of 1000 m (trap A), 3000 m (trap B) and 4700 m (trap C) were measured between October 1995 and August 1998 on the Porcupine Abyssal Plain (PAP, NE Atlantic). The goal of the study was to provide detailed information on the microbial contributions to the particulate organic carbon and DNA fluxes. Bacterial fluxes associated with settling particles in the PAP area were generally low and significantly lower than bacterial fluxes reported from the same area during 1989–90. Marked seasonal pulses in the microbial assemblages were observed in all years that were associated with particle flux maxima in April–June. No significant differences were found in microbial fluxes between 1000 and 4700 m depth, but both the bacterial biomass flux and the frequency of dividing bacteria increased with depth, suggesting that organic matter turnover and conversion into bacterial biomass increased in the deeper traps. The structure of microbial assemblages displayed clear changes with increasing depth; the ratios of bacteria to both flagellates and cyanobacteria increased up to 4-fold between 1000 and 4700 m, showing a marked increase in bacterial dominance in the deeper layers of the water column. A parallel increase of the bacterial contribution to particulate organic carbon (POC) and DNA fluxes was observed. Total microbial contribution to the POC flux in the PAP area was about 2%, whereas the contribution of cyanobacteria was negligible. Fluxes of microbial assemblages were significantly correlated with DNA fluxes and on average the bacteria accounted for 5% of DNA fluxes. Data reported here confirm that the “rain” of particulate bacterial DNA may represent an important source of nucleotides for deep-sea bacteria, but also suggests that a much larger pool of detrital DNA is potentially available to deep-sea micro-organisms.  相似文献   
3.
Abstract. Quantitative information on the vertical distribution of meiofaunal abundances and biomass were obtained from samples collected at 3 bathyal stations in the Eastern Mediterranean Sea located at the same depth but characterized by different food supply. Vertical distribution patterns of nieiofauna were investigated in relation to the biochemical composition of the sediment organic matter (proteins, carbohydrates, and lipids) and compared to benthic bacterial standing stocks. No significant relationship between bacteria and meiofauna was found, whereas a significant relationship between protein and lipid concentrations and total meiofauna density was observed. These data suggest that labile organic matter. considered as material readily aVdihbk to benthic consumers, may be an important factor regulating meiofaunal abundance and vertical distribution in deep-sea sediments.  相似文献   
4.
5.
A swath bathymetric survey was conducted on Marsili Volcano, the biggest seamount in the Tyrrhenian Sea. It stands 3000 m above the surrounding oceanic crust of the 3500 m-deep Marsili back-arc basin and is axially located within the basin. The seamount has an elongated shape and presents distinctive morphology, with narrow (<1000 m) ridges, made up of several elongated cones, on the summit zone and extensive cone fields on its lower flanks. A dredging campaign carried out at water depths varying between 3400 and 600 m indicates that most of Marsili Seamount is composed of medium-K calc-alkaline basalts. Evolved high-K andesites were only recovered from the small cones on the summit axis zone. Petrological and geochemical characteristics of the least differentiated basalts reveal that at least two varieties of magmas have been erupted on the Marsili Volcano. Group 1 basalts have plagioclase and olivine as dominant phases and show lower Al, Ca, K, Ba, Rb and Sr, and higher Fe, Na, Ti and Zr with respect to a second type of basaltic magma. Group 2 basalts reveal the presence of clinopyroxene as an additional phenocryst phase. In addition, the two basaltic magmas have different original pre-eruptive H2O content (group 1, H2O-poor and group 2, H2O-rich). Moreover, comparison of the compositional trends and mineralogical compositions obtained from MELTS [Ghiorso, M.S., Sack, R.O., Contrib. Mineral. Petrol. 119 (1995) 197–212] fractional crystallization calculations reveal that the evolved andesites can only exclusively be derived from a low-pressure (0.3 kbar) fractionation of magmas compositionally similar to the least evolved group 2 basalts. Finally, we suggest that the high vesicularity of the basalts sampled at relatively great depths (>2400 m) on the edifice is governed by H2O and, probably, CO2 exsolution and is not a feature indicative of shallow water depth eruption.  相似文献   
6.
Investigation of a breakage probability model published by Vogel and Peukert [Vogel, L. and Peukert, W., 2004. Determination of material properties relevant to grinding by practicable labscale milling tests. Int. J. Miner. Process., 74S, 329–338.] has led to a modification of their model to describe the degree of impact breakage, t10. The modified model takes a form similar to the JKMRC prior art breakage model, but with particle size and breakage properties incorporated explicitly in the model.  相似文献   
7.
Water stored in soils, in part, controls vegetation productivity and the duration of growing seasons in wildland ecosystems. Soil water is the dynamic product of precipitation, evapotranspiration and soil properties, all of which vary across complex terrain making it challenging to decipher the specific controls that soil water has on growing season dynamics. We assess how soil water use by plants varies across elevations and aspects in the Dry Creek Experimental Watershed in southwest Idaho, USA, a mountainous, semiarid catchment that spans low elevation rain to high elevation snow regimes. We compare trends in soil water and soil temperature with corresponding trends in insolation, precipitation and vegetation productivity, and we observe trends in the timing, rate and duration of soil water extraction by plants across ranges in elevation and aspect. The initiation of growth-supporting conditions, indicated by soil warming, occurs 58 days earlier at lower, compared with higher, elevations. However, growth-supporting conditions also end earlier at lower elevations due to the onset of soil water depletion 29 days earlier than at higher elevations. A corresponding shift in peak NDVI timing occurs 61 days earlier at lower elevations. Differences in timing also occur with aspect, with most threshold timings varying by 14–30 days for paired north- and south-facing sites at similar elevations. While net primary productivity nearly doubles at higher elevations, the duration of the warm-wet period of active water use does not vary systematically with elevation. Instead, the greater ecosystem productivity is related to increased soil water storage capacity, which supports faster soil water use and growth rates near the summer solstice and peak insolation. Larger soil water storage does not appear to extend the duration of the growing season, but rather supports higher growing season intensity when wet-warm soil conditions align with high insolation. These observations highlight the influence of soil water storage capacity in dictating ecological function in these semiarid steppe climatic regimes.  相似文献   
8.
A field trial experiment was carried out to assess the potential of bioremediation for mobilisation of carbon in organic-rich sediments. Both bioaugmentation (bio-fixed microorganisms) and biostimulation (oxygen release compounds--ORC) protocols have been tested and the response of the bacterial community has been described to assess the baseline for bioremediation potential. Multifactorial ANOVA revealed that bioaugmentation protocol had an effect in stimulate mobilisation processes and significantly enhanced extra-cellular enzymatic activity rates. In contrast biostimulation treatment did not have an effect on mobilisation rates but contributed to enhance bacterial efficiency through a maximization of the bacterial production:enzymatic activity ratio. Average calculation of net mobilised carbon showed that 23% increase of mobilised pool was accounted for bioaugmentation in summer. Although biostimulation accounted for a smaller increase in mobilised carbon (<10%), the use of ORC resulted in an increased mineralisation and net carbon loss via respiration. Based on our results, a conceptual model for application of bioremediation to face the problem of sediment eutrophication is discussed.  相似文献   
9.
We analyze the processes responsible for the generation and evolution of sea-surface temperature anomalies observed in the Southern Ocean during a decade based on a 2D diagnostic mixed-layer model in which geostrophic advection is prescribed from altimetry. Anomalous air–sea heat flux is the dominant term of the heat budget over most of the domain, while anomalous Ekman heat fluxes account for 20–40% of the variance in the latitude band 40°?60°S. In the ACC pathway, lateral fluxes of heat associated with anomalous geostrophic currents are a major contributor, dominating downstream of several topographic features, reflecting the influence of eddies and frontal migrations. A significant fraction of the variability of large-scale SST anomalies is correlated with either ENSO or the SAM, each mode contributing roughly equally. The relation between the heat budget terms and these climate modes is investigated, showing in particular that anomalous Ekman and air–sea heat fluxes have a co-operating effect (with regional exceptions), hence the large SST response associated with each mode. It is further shown that ENSO- or SAM-locked anomalous geostrophic currents generate substantial heat fluxes in all three basins with magnitude comparable with that of atmospheric forcings for ENSO, and smaller for the SAM except for limited areas. ENSO-locked forcings generate SST anomalies along the ACC pathway, and advection by mean flows is found to be a non-negligible contribution to the heat budget, exhibiting a wavenumber two zonal structure, characteristic of the Antarctic Circumpolar Wave. By contrast SAM-related forcings are predominantly zonally uniform along the ACC, hence smaller zonal SST gradients and a lesser role of mean advection, except in the SouthWest Atlantic. While modeled SST anomalies are significantly correlated with observations over most of the Southern Ocean, the analysis of the data-model discrepancies suggests that vertical ocean physics may play a significant role in the nonseasonal heat budget, especially in some key regions for mode water formation.  相似文献   
10.
Most paleomagnetic applications require a precise, rationally organized and up-todate catalogue or database of paleomagnetic results worldwide. These include reconstructions of continents, calculations of the Apparent Polar Wander Paths (APWPs) or paleolatitude drift curves, testing the Geocentric Axial Dipole (GAD) model, studies of geomagnetic paleosecular variation or reversal asymmetries, comparison of coeval results obtained from different types of rocks, estimation of inclination shallowing in sedimentary rocks and understanding the delay in remanence acquisition caused by slow cooling in large intrusions. For this purpose, various databases, such as the Global Paleomagnetic Database (GPMDB), and the Magnetics Information Consortium Database (MagIC) have been generated. This paper presents a new relational database (PALEOMAGIA) where 3278 entries of Precambrian data have been split geographically, sorted according to age and rock types and ranked using a revised version of the Van der Voo grading scheme. The latest geochronologic information is included wherever available. Significant effort has been put to the retrieval and archiving of data published in the last decade, which are virtually nonexistent in GPMDB. Here we present the database and its browser-based user interface from a scientific and a technical point of view.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号