首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   37篇
  免费   0篇
大气科学   8篇
地球物理   5篇
地质学   5篇
海洋学   1篇
天文学   15篇
自然地理   3篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2005年   3篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1997年   1篇
  1993年   1篇
  1992年   1篇
  1988年   2篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1976年   1篇
  1972年   1篇
排序方式: 共有37条查询结果,搜索用时 31 毫秒
1.
The pK1* and pK2* for the dissociation of carbonic acid in seawater have been determined from 0 to 45°C and S = 5 to 45. The values of pK1* have been determined from emf measurements for the cell:
Pt](1 − X)H2 + XCO2|NaHCO3, CO2 in synthetic seawater|AgC1; Ag
where X is the mole fraction of CO2 in the gas. The values of pK2* have been determined from emf measurements on the cell:
Pt, H2(g, 1 atm)|Na2CO3, NaHCO3 in synthethic seawater|AgC1; Ag
The results have been fitted to the equations:
lnK*1 = 2.83655 − 2307.1266/T − 1.5529413 lnT + (−0.20760841 − 4.0484/T)S0.5 + 0.08468345S − 0.00654208S1
InK*2 = −9.226508 − 3351.6106/T− 0.2005743 lnT + (−0.106901773 − 23.9722/T)S0.5 + 0.1130822S − 0.00846934S1.5
where T is the temperature in K, S is the salinity, and the standard deviations of the fits are σ = 0.0048 in lnK1* and σ = 0.0070 in lnK2*.Our new results are in good agreement at S = 35 (±0.002 in pK1*and ±0.005 in pK2*) from 0 to 45°C with the earlier results of Goyet and Poisson (1989). Since our measurements are more precise than the earlier measurements due to the use of the Pt, H2|AgCl, Ag electrode system, we feel that our equations should be used to calculate the components of the carbonate system in seawater.  相似文献   
2.
Deposition in the New Jersey Pinelands was very acidic (pH=4.17) and contained high levels of SO2 −2 based on bulk deposition measurementsfrom July 1984–July 1986. Streamwater over the same interval in undisturbed watersheds was less acidic (pH =4.52) and had proportionately less SO4 −2. A preliminary alkalinity budget for undisturbed watersheds suggested that SO4 −2 retention within Pinelands watersheds accounted for a large portion of the total alkalinity generated and thereby lessened the impact of acidic deposition on surface waters. The only process capable of explaining the retention of SO4 −2 was microbial sulfate reduction in the extensive wetlands surrounding Pinelands streams which occurred at high rates.  相似文献   
3.
Phosphorus (P) export from agricultural lands above known threshold levels can result in adverse impacts to receiving water quality. Phosphorus loss occurs in dissolved and sediment‐bound, or particulate phosphorous (PP), forms, with the latter often dominating losses from row‐cropped systems. To target practices, land managers need good computer models and model developers need good monitoring data. Sediment monitoring data (e.g. radiometric finger printing and sediment P sorption capacity) can help identify sediment source areas and improve models, but require more sediment mass than is typically obtained by automatic sampling. This study compares a simple suspended sediment sampler developed at the University of Exeter (UE) with automatic sampling in intermittent channels draining corn and alfalfa fields. The corn field had a greater runoff coefficient (27%) than alfalfa (11%). No differences were found in enrichment ratios (sediment constituent/soil constituent) in PP (PPER) or percent loss on ignition (LOIER) between paired UE samplers on corn. The median LOIER for the UE samplers (1·9%) did not differ significantly (p > 0·13) from the automatic sampler (2·0%). The PPER from the UE samplers was on average 20% lower than the automatic samplers. A correlation (r2 = 0·75) was found between sediment PP and % LOI from automatic samplers and UE samplers for particles < 50 µm, while for > 50 µm PP concentration did not change with changes in % LOI. Sediment ammonium‐oxalate extractable metals were similarly related to LOI, with the strongest correlation for iron (r2 = 0·71) and magnesium (r2 = 0·70). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
4.
5.
The temperature variability of the Atlantic Ocean is investigated using an eddy-permitting (1/4°) global ocean model (ORCA-025) forced with historical surface meteorological fields from 1958 to 2001. The simulation of volume-averaged temperature and the vertical structure of the zonally averaged temperature trends are compared with those from observations. In regions with a high number of observations, in particular above a depth of 500 m and between 22° N and 65° N, the model simulation and the dataset are in good agreement. The relative contribution of variability in ocean heat transport (OHT) convergence and net surface heat flux to changes in ocean heat content is investigated with a focus on three regions: the subpolar and subtropical gyres and the tropics. The surface heat flux plays a relatively minor role in year-to-year changes in the subpolar and subtropical regions, but in the tropical North Atlantic, its role is of similar significance to the ocean heat transport convergence. The strongest signal during the study period is a cooling of the subpolar gyre between 1970 and 1990, which subsequently reversed as the mid-latitude OHT convergence transitioned from an anomalously weak to an anomalously strong state. We also explore whether model OHT anomalies can be linked to surface flux anomalies through a Hovmöller analysis of the Atlantic sector. At low latitudes, increased ocean heat gain coincides with anomalously strong northward transport, whereas at mid-high latitudes, reduced ocean heat loss is associated with anomalously weak heat transport.  相似文献   
6.
Changes in groundwater tables brought about by sea level increases in the Delaware River Basin (near Philadelphia) about 2,500 years B.P., initiated wetland development at the Princeton-Jefferson Branch of the Woodbury Creek marshes. Continual increases in sea level pushed groundwater tables further upward, and by approximately 800 years B.P., groundwater tables had risen to the upper limits for woody vegetation at the site. By the time European settlers arrived in the late 1600s nontidal sedge marshes dominated the site. Upon arriving colonists began manipulating the hydrology of the Delaware River Basin by constructing dams and dikes for flood control. Soon many areas were cut off from direct contact with the river. During the next one and one-half centuries sea level continued to rise, and because of channelization of the Delaware River the tidal range doubled. During the early 1900s flood control structures began to fail allowing tidal waters to periodically inundate these protected sites. At that time the site was dominated by a Quercus-Castanea swamp forest with hummocks of Cyperaceae interspersed throughout. In 1940 the dike surrounding the Princeton-Jefferson marsh collapsed and the site was immediately inundated with tidal waters on a regular basis. Within a short period of time tidal freshwater marsh developed and has continued to the present day. It is clear from this investigation that changes in hydrology brought about by cultural modifications have been directly responsible for the ontogeny of this tidal marsh. The influence cultural impacts have had on wetland development at the Princeton-Jefferson marsh suggest that it may be necessary to reevaluate the extent humans have modified the development and structure of the present day upper Delaware River estuary. Although the ability to discern historic vegetation zonation patterns is limited, these marshes can record individual events that have shaped these wetlands through time. Due to differences in the structure of the plant community, rates of decomposition, and processes of accretion, Redfield’s model (1972) of tidal salt marsh development does not apply to the Princeton-Jefferson marsh. Along a submerging coast, the development of tidal freshwater marsh in many estuaries may be necessary for the establishment of brackish and salt marshes by creating and maintaining a suitable habitat for the eventual colonization of more salt-tolerant plant species. The roles these wetlands have played in the development of the estuaries has been underestimated in the past.  相似文献   
7.
8.
Through its control on the marine ITCZ, future changes in the tropical Atlantic meridional sea-surface temperature gradient (TAG) could have important impacts, on regional to global scales. We study the inter-model spread of projected TAG trends in response to increasing CO2, using results from 19 coupled GCMs which took part in the IPCC fourth assessment. Some models project substantial changes, with the smallest changes being in boreal autumn. There is substantial uncertainty, with no consistency even in the sign of change, and an ensemble mean close to zero. However, a strong statistical relationship is found between the simulated magnitudes of TAG trends and unforced TAG variability. Models with larger unforced variability in December–February show larger magnitude trends. We speculate that this relationship may be due to an underlying system of feedbacks whose strength varies considerably from model to model (the unforced variability ranges by a factor of 3 amongst these models, and the models exhibit large differences in mean state). We present evidence from further analysis and the literature to suggest which physical mechanisms may be involved. In particular, models projecting larger(smaller) magnitude TAG trends have larger(smaller) SST variability and cooler(warmer) mean SST in not just the Atlantic, but all three tropical/sub-tropical oceans, especially in the southern hemisphere near eastern coasts. These results could assist efforts to understand model errors in present and future tropical climate, and to develop observational constraints on future tropical projections.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号