首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
大气科学   2篇
地球物理   6篇
地质学   1篇
天文学   1篇
  2021年   1篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2013年   1篇
  1987年   1篇
  1983年   1篇
  1980年   1篇
  1974年   1篇
排序方式: 共有10条查询结果,搜索用时 328 毫秒
1
1.
Holton  L.  Deshayes  J.  Backeberg  B. C.  Loveday  B. R.  Hermes  J. C.  Reason  C. J. C. 《Climate Dynamics》2017,48(7-8):2107-2121
Climate Dynamics - Investigating the variability of Agulhas leakage, the volume transport of water from the Indian Ocean to the South Atlantic Ocean, is highly relevant due to its potential...  相似文献   
2.
Building pressure cycling (BPC) is becoming an increasingly important tool for studying vapor intrusion. BPC has been used to distinguish subslab and indoor sources of vapor intrusion as well as to define reasonable worst case volatile organic compound mass discharge into a structure. Analyses have been performed both semi-quantitatively with concentration trends and quantitatively with more rigorous flux calculation and source attribution methods. This paper reviews and compares the protocols and outcomes from multiple published applications of this technology to define the key variables that control performance. Common lessons learned are identified, including those that help define the range of building size and type to which BPC is applicable. Differences in test protocols are discussed, recognizing that the complexity of the test protocol required depends on the particular objectives of each project. Research gaps are identified and tabulated for future validation studies and applications.  相似文献   
3.
Groundwater elevation fluctuation has been recognized as one mechanism causing temporal indoor air volatile organic chemical (VOC) impacts in vapor intrusion risk assessment guidance. For dissolved VOC sources, groundwater table fluctuation shortens/lengthens the transport pathway, and delivers dissolved contaminants to soils that are alternating between water saturated and variably saturated conditions, thereby enhancing volatilization potential. To date, this mechanism has not been assessed with field data, but enhanced VOC emission flux has been observed in lab-scale and modeling studies. This work evaluates the impact of groundwater elevation changes on VOC emission flux from a dissolved VOC plume into a house, supplemented with modeling results for cyclic groundwater elevation changes. Indoor air concentrations, air exchange rates, and depth to groundwater (DTW) were collected at the study house during an 86-d constant building underpressurization test. These data were used to calculate changes in trichloroethylene (TCE) emission flux to indoor air, during a period when DTW varied daily and seasonally from about 3.1 to 3.4 m below the building foundation (BF). Overall, TCE flux to indoor air varied by about 50% of the average, without any clear correlation to changes in DTW or its change rate. To complement the field study, TCE surface emission fluxes were simulated using a one-dimensional model (HYDRUS 1D) for conditions similar to the field site. Simulation results showed time-averaged surface TCE fluxes for cyclic water-table elevations were greater than for stationary water-table conditions at an equivalent time-averaged water-table position. The magnitudes of temporal TCE emission flux changes were generally less than 50% of the time-averaged flux, consistent with the field site observations. Simulation results also suggested that TCE emission flux changes due to groundwater fluctuation are likely to be significant at sites with shallow groundwater (e.g., < 0.5 m BF) and permeable soil types (e.g., sand).  相似文献   
4.
5.
Abstract

Barotropic Rossby waves are studied in a homogeneous fluid contained in a rotating cylindrical annulus with a radially sloping bottom boundary. The waves are forced by a simple source-sink distribution which can be rotated differentially relative to the annulus. When the speed of the source-sink distribution is close to the phase speed for a free Rossby wave of a given mode, resonant amplification occurs. The experimental results are in qualitative agreement with the predictions of a simple linear theory, but certain systematic differences between theory and experiment were observed.  相似文献   
6.
Following the May 18, 1980 eruption of Mount St. Helens, up to 11.5 cm of volcanic ash was deposited in sections of the upper Columbia River estuary. A survey of the benthic infauna of this area indicates that most taxa were able to inhabit the ash, suggesting that the material is nontoxic to most groups. However, the abundance of the taxa examined was dependent on the distribution of the ash within the sediment column. Except for the oligochaetes, animal densites were reduced in areas where volcanic ash lay atop the sediment surface as compared to areas where the ash layer had been buried beneath, or mixed with sands and/or muds. The ash apparently affects the infauna through some physical means, possibly related to its fine grain size.  相似文献   
7.
Temporal and spatial variability of indoor air volatile organic compound (VOC) concentrations can complicate vapor intrusion (VI) assessment and decision-making. Indicators and tracers (I&T) of VI, such as differential temperature, differential pressure, and indoor radon concentration, are low-cost lines of evidence to support sampling scheduling and interpretation of indoor air VOC sampling results. This study compares peak indoor air chlorinated VOC concentrations and I&T conditions before and during those peak events at five VI sites. The sites differ geographically and in their VI conceptual site models (CSM). Relative to site-specific baseline values, the results show that cold or falling outdoor temperatures, rising cross slab differential pressures, and increasing indoor radon concentrations can predict peak VOC concentrations. However, cold outdoor air temperature was not useful at one site where elevated shallow soil temperature was a better predictor. Correlations of peak VOC concentrations to elevated or rising barometric pressure and low wind speed were also observed with some exceptions. This study shows how the independent variables that control or predict peak indoor air VOC concentrations are specific to building types, climates, and VI CSMs. More I&T measurements at VI sites are needed to identify scenario-specific baseline and peak related I&T conditions to improve decision-making.  相似文献   
8.
9.
10.
The annual cycle of the zonally averaged circulation in the middle atmosphere (16–96 km) is simulated using a numerical model based on the primitive equations in log pressure coordinates. The circulation is driven radiatively by heating due to solar ultraviolet absorption by ozone and infrared cooling due to carbon dioxide and ozone (parameterized as a Newtonian cooling). Since eddy fluxes due to planetary waves are neglected in the model, the computed mean meridional circulation must be interpreted as thediabatic circulation, not as the total eulerian mean. Rayleigh friction with a short (2–4 day) time constant above 70 km is included to simulate the strong mechanical dissipation which is hypothesized to exist in the vicinity of the mesopause due to turbulence associated with gravity waves and tides near the mesopause.Computed mean winds and temperatures are in general agreement with observations for both equinox and solstice conditions. In particular, the strong mechanical damping specified near the mesopause makes it possible to simulate the cold summer and warm winter mesopause temperatures without generating excessive mean zonal winds. In addition, the model exhibits a strong semiannual cycle in the mean zonal wind at the equator, with both amplitude and vertical structure in agreement with the easterly phase of the observed equatorial semiannual oscillation.Contribution No. 497, Department of Atmospheric Sciences, University of Washington, Seattle.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号