首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   82篇
  免费   2篇
  国内免费   1篇
测绘学   1篇
大气科学   17篇
地球物理   3篇
地质学   42篇
海洋学   1篇
综合类   2篇
自然地理   19篇
  2021年   1篇
  2019年   1篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
  2007年   2篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   1篇
  2002年   17篇
  2000年   1篇
  1999年   2篇
  1997年   3篇
  1996年   1篇
  1995年   4篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   2篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1987年   5篇
  1985年   3篇
  1982年   1篇
  1975年   1篇
  1972年   1篇
排序方式: 共有85条查询结果,搜索用时 531 毫秒
1.
2.
3.
4.
A Holocene tephra record from the Lofoten Islands, Arctic Norway   总被引:2,自引:0,他引:2  
Pilcher, J., Bradley, R. S., Francus, P. & Anderson, L. 2005 (May): A Holocene tephra record from the Lofoten Islands, Arctic Norway. Boreas , Vol. 34, pp. 136–156. Oslo. ISSN 0300–9483.
A tephrochronology has been established for a peat bog in the Lofoten Islands that provides a dating framework for future lake and bog studies of climate variation in this climatically sensitive area. Twenty-three tephra layers were identified, all apparently of Icelandic origin. These included the historically dated tephras of AD 1875 (Askja), AD 1362 (Öraefajökull), AD 1158 (Hekla), AD 1104 (Hekla) and the Landnam tephra identified at AD 875 in the GRIP ice core. Other layers, previously radiocarbon dated in Ireland and elsewhere, include the Hekla eruptions of c. 2310 BC and c. 5990 BC. The basal clays below the peat contain tephra of both the Askja eruption of c. 9500 BC (10 000 radiocarbon years BP) and the well-known Vedde Ash of c. 12 000 BP (10 030 80 BC in GRIP ice core).  相似文献   
5.
6.
7.
Kongsbreen, a tide-water glacier located in Kongsfjorden, is the most active calving glacier in Svalbard. Three SPOT images are used to determine its flow speed and calving rate. The position of fourteen reference points was determined on the coast or mountain sides, and the changes in position of 144 characteristic features on the glacier surface were calculated. The obtained speed profiles arc consistent with the findings from previous works from 1962-64 and 1983-86. When comparing the obtained longitudinal profile to the data from 1962–64. it is found that the flow velocity at a given distance from the front has been nearly constant.
The results from the SPOT images analysis are completed by using existing topographic works. The present study shows that SPOT images (panchromatic as well as multichannel), recorded with a periodicity of one year, can be used to determine precisely the annual flow speed and calving rate of active glaciers such as Kongsbreen. Images recorded with a periodicity of two, three or four weeks can allow identical determination on tide-water glaciers during a surging active phase.  相似文献   
8.
Implementing the RMA compels those responsible for managing the allocation and end-use of water resources to simultaneously address several conceptual issues. These include the forced expansion of the range of relevant management values, the determination of whether water is a commons or a commodity, regionalism, opportunity costs in allocation, and efficiency of end-use. New Zealand's relative success in this endeavour can provide important lessons for other English-speaking common law nations around the Pacific Rim.  相似文献   
9.
The eastern part Svalbard archipelago and the adjacent areas of the Barents Sea were subject to extensive erosion during the Late Weichselian glaciation. Small remnants of older sediment successions have been preserved on Edgeeya, whereas a more complete succession on Kongsøya contains sediments from two different ice-free periods, both probably older than the Early Weichselian. Ice movement indicators in the region suggest that the Late Weichselian ice radiated from a centre east of Kong Karls Land. On Bjørnøya, on the edge of the Barents Shelf, the lack of raised shorelines or glacial striae from the east indicates that the western parts of the ice sheet were thin during the Late Weichselian. The deglaciation of Edgeøya and Barentsøya occurred ca 10,300 bp as a response to calving of the marine-based portion of the ice sheet. Atlantic water, which does not much influence the coasts of eastern Svalbard today, penetrated the northwestern Barents Sea shortly after the deglaciation. At that time, the coastal environment was characterised by extensive longshore sediment transport and deposition of spits at the mouths of shallow palaeo-fjords.  相似文献   
10.
Rates of aerodynamic entrainment in a developing boundary layer   总被引:1,自引:0,他引:1  
Despite its significance for inception of grain transport by wind, the initial dislodgement of grains from a static surface by aerodynamic forces of drag and lift in the absence of grain collision has received little attention. This paper describes a series of wind-tunnel experiments in which the erosion of narrow strips of loose grains from the roughened surface of a flat plate exposed to a range of wind speeds was examined. The progressive downwind development of the boundary layer over the plate provided a range of airflow conditions which permitted systematic evaluation of grain entrainment rates arising from purely aerodynamic forces. Use of closely graded size fractions in flat, single grain layers resting on identical, fixed grain support eliminated the effects of surface irregularities and impacts from saltation. Results show that erosion of strips of loose grains develops with time according to an inverse exponential function in which the entrainment rate time constant relates to Shields dimensionless shear stress function. An empirical expression defining aerodynamic entrainment rate in terms of rate of strip erosion is derived and comparisons are made between present and published data. The need for additional data to resolve several questions raised by the present investigation is stressed. In addition, a simple, objective technique for accurate determination of the aerodynamic entrainment threshold of any loose, granular sediment is proposed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号