首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1278篇
  免费   88篇
  国内免费   24篇
测绘学   34篇
大气科学   93篇
地球物理   385篇
地质学   446篇
海洋学   112篇
天文学   186篇
综合类   6篇
自然地理   128篇
  2024年   2篇
  2023年   4篇
  2022年   5篇
  2021年   28篇
  2020年   33篇
  2019年   29篇
  2018年   48篇
  2017年   37篇
  2016年   58篇
  2015年   56篇
  2014年   47篇
  2013年   84篇
  2012年   70篇
  2011年   76篇
  2010年   64篇
  2009年   83篇
  2008年   84篇
  2007年   75篇
  2006年   63篇
  2005年   52篇
  2004年   51篇
  2003年   41篇
  2002年   38篇
  2001年   22篇
  2000年   13篇
  1999年   13篇
  1998年   22篇
  1997年   17篇
  1996年   15篇
  1995年   10篇
  1994年   10篇
  1993年   11篇
  1992年   12篇
  1991年   6篇
  1990年   2篇
  1989年   5篇
  1988年   5篇
  1987年   8篇
  1986年   7篇
  1985年   15篇
  1984年   6篇
  1983年   15篇
  1982年   12篇
  1981年   6篇
  1980年   5篇
  1979年   5篇
  1978年   7篇
  1977年   4篇
  1973年   4篇
  1925年   1篇
排序方式: 共有1390条查询结果,搜索用时 31 毫秒
1.
The giant impact hypothesis is the dominant theory explaining the formation of our Moon. However, the inability to produce an isotopically similar Earth–Moon system with correct angular momentum has cast a shadow on its validity. Computer-generated impacts have been successful in producing virtual systems that possess many of the observed physical properties. However, addressing the isotopic similarities between the Earth and Moon coupled with correct angular momentum has proven to be challenging. Equilibration and evection resonance have been proposed as means of reconciling the models. In the summer of 2013, the Royal Society called a meeting solely to discuss the formation of the Moon. In this meeting, evection resonance and equilibration were both questioned as viable means of removing the deficiencies from giant impact models. The main concerns were that models were multi-staged and too complex. We present here initial impact conditions that produce an isotopically similar Earth–Moon system with correct angular momentum. This is done in a single-staged simulation. The initial parameters are straightforward and the results evolve solely from the impact. This was accomplished by colliding two roughly half-Earth-sized impactors, rotating in approximately the same plane in a high-energy, off-centered impact, where both impactors spin into the collision.  相似文献   
2.
3.
Over an oceanic peatland, the concentration of Na in fog averaged 38.1 mgl?1 compared with 1.8 mgl?1 in rain, resulting in a significant flux of mineral elements to the surface. Between 16 May and 20 June 1990 the average mass flux of Na to the bog surface by fog, rain, and dry deposition was 21.9, 10.4 and 7.0 mg m?2 d?1. There was little long-term storage of Na within the peatland system, where Na losses measured in stream runoff averaged 34.8 mg m2 d?1, and deep groundwater losses 4 mg m?2 d?1. Calcium and Mg were preferentially retained in the organic soil, whereas K was relatively mobile. Potassium tended to become concentrated in the unsaturated zone. Stream runoff had a consistently higher pH than groundwater, corresponding to higher Ca and Mg concentrations, which may have been from mineral sources in the headwater ponds. Otherwise, the stream water chemistry was closely related to groundwater in the upper layers of the peat deposit.  相似文献   
4.
It has recently been argued that the observed ellipticities of galaxies may be determined at least in part by the primordial tidal gravitational field in which the galaxy formed. Long-range correlations in the tidal field could thus lead to an ellipticity–ellipticity correlation for widely separated galaxies. We present a new model relating ellipticity to angular momentum, which can be calculated in linear theory. We use this model to calculate the angular power spectrum of intrinsic galaxy shape correlations. We show that, for low-redshift galaxy surveys, our model predicts that intrinsic correlations will dominate correlations induced by weak lensing, in good agreement with previous theoretical work and observations. We find that our model produces ' E -mode' correlations enhanced by a factor of 3.5 over B -modes on small scales, making it harder to disentangle intrinsic correlations from those induced by weak gravitational lensing.  相似文献   
5.
6.
Abstract— We explore the likely production and fate of 14C in the thick nitrogen atmosphere of Saturn's moon Titan and investigate the constraints that measurements of 14C might place on Titan's photochemical, atmospheric transport and surface‐atmosphere interaction processes. Titan's atmosphere is thick enough that cosmic‐ray flux limits the production of 14C: absence of a strong magnetic field and the increased distance from the Sun suggest production rates of ?9 atom/cm2/s, ?4x higher than Earth. The fate and detectability of 14C depends on the chemical species into which it is incorporated: as methane it would be hopelessly diluted even in only the atmosphere. However, in the more likely case that the 14C attaches to the haze that rains out onto the surface (as tholin, HCN or acetylene and their polymers), haze in the atmosphere or recently deposited on the surface would be quite radioactive. Such radioactivity may lead to a significant enhancement in the electrical conductivity of the atmosphere which will be measured by the Huygens probe. Measurements with simple detectors on future missions could place useful constraints on the mass deposition rates of photochemical material on the surface and identify locations where surface deposits of such material are “freshest”.  相似文献   
7.
The Hornton Stone is an unusually pure ooidal ironstone of the Lower Jurassic Marlstone Rock Formation, cropping out on the Edge Hill escarpment and adjacent ironstone plateau in central England. The stone has been quarried for building and ornamental purposes since Medieval times, and more recently as a source of iron ore. Local quarries and buildings provide excellent opportunities to appreciate its fossil content, sedimentary structures and origin.  相似文献   
8.
The Lufilian foreland is a triangular-shaped area located in the SE of the Democratic Republic of Congo and to the NE of the Lufilian arc, which hosts the well-known Central African Copperbelt. The Lufilian foreland recently became an interesting area with several vein-type (e.g., Dikulushi) and stratiform (e.g., Lufukwe and Mwitapile) copper occurrences. The Lufilian foreland stratiform Cu mineralization is, to date, observed in sandstone rock units belonging to the Nguba and Kundelungu Groups (Katanga Supergroup).The Mwitapile sandstone-hosted stratiform Cu prospect is located in the north eastern part of the Lufilian foreland. The host rock for the Cu mineralization is the Sonta Sandstone of the Ngule Subgroup (Kundelungu Group). A combined remote sensing, petrographic and fluid inclusion microthermometric analysis was performed at Mwitapile and compared with similar analysis previously carried out at Lufukwe to present a metallogenic model for the Mwitapile- and Lufukwe-type stratiform copper deposits. Interpretation of ETM+ satellite images for the Mwitapile prospect and the surrounding areas indicate the absence of NE–SW or ENE–WSW faults, similar to those observed controlling the mineralization at Lufukwe. Faults with these orientations are, however, present to the NW, W, SW and E of the Mwitapile prospect. At Mwitapile, the Sonta Sandstone host rock is intensely compacted, arkosic to calcareous with high silica cementation (first generation of authigenic quartz overgrowths). In the Sonta Sandstone, feldspar and calcite are present in disseminated, banded and nodular forms. Intense dissolution of these minerals caused the presence of disseminated rectangular, pipe-like and nodular dissolution cavities. Sulfide mineralization is mainly concentrated in these cavities. The hypogene sulfide minerals consist of two generations of pyrite, chalcopyrite, bornite and chalcocite, separated by a second generation of authigenic quartz overgrowth. The hypogene sulfide minerals are replaced by supergene digenite and covellite. Fluid inclusion microthermometry on the first authigenic quartz phase indicates silica precipitation from an H2O–NaCl–CaCl2 fluid with a minimum temperature between 111 and 182 °C and a salinity between 22.0 and 25.5 wt.% CaCl2 equiv. Microthermometry on the second authigenic quartz overgrowths and in secondary trails related to the mineralization indicate that the mineralizing fluid is characterized by variable temperatures (Th = 120 to 280 °C) and salinities (2.4 to 19.8 wt.% NaCl equiv.) and by a general trend of increasing temperatures with increasing salinities.Comparison between Mwitapile and Lufukwe indicates that the stratiform Cu mineralization in the two deposits is controlled by similar sedimentary, diagenetic and structural factors and likely formed from a similar mineralizing fluid. A post-orogenic timing is proposed for the mineralization in both deposits. The main mineralization controlling factors are grain size, clay and pyrobitumen content, the amount and degree of feldspar and/or calcite dissolution and the presence of NE–SW to ENE–WSW faults. The data support a post-orogenic fluid-mixing model for the Mwitapile- and Lufukwe-type sandstone-hosted stratiform Cu deposits, in which the mineralization is related to the mixing between a Cu-rich hydrothermal fluid, with a temperature up to 280 °C and a maximum salinity of 19.8 wt.% NaCl equiv., with a colder low salinity reducing fluid present in the sandstone host rock. The mineralizing fluid likely migrated upwards to the sandstone source rocks along NE–SW to ENE–WSW orientated faults. At Lufukwe, the highest copper grades at surface outcrops and boreholes were found along and near to these faults. At Mwitapile, where such faults are 2 to 3 km away, the Cu grades are much lower than at Lufukwe. Copper precipitation was possibly promoted by reduction from pre-existing hydrocarbons and non-copper sulfides and by the decrease in fluid salinity and temperature during mixing. Based on this research, new Cu prospects were proposed at Lufukwe and Mwitapile and a set of recommendations for further Cu exploration in the Lufilian foreland is presented.  相似文献   
9.
Configurational changes with temperature are important for the thermodynamic and transport properties of most aluminosilicate melts, but in general are not well understood. Here, we present high-resolution 27Al and 17O NMR data on several calcium aluminosilicate glasses prepared with varying quench rates and thus with fictive temperatures that span ranges up to about 200 K. In all compositions the content of five-coordinated aluminum increases with fictive temperature, in agreement with recent high temperature NMR data on melts. In a glass of CaAl2Si2O8 (“anorthite”) composition, the content of non-bridging oxygens also increases with temperature; however this effect was not observed in a sample with a much higher CaO/Al2O3 ratio. We present a consistent notation for reactions among structural species in these systems that clarify why in some cases, high-coordinated network cations may appear on the same side of the reaction, while in others they occur on the opposite sides: the key difference is in accounting for all coordination changes for oxygens. Mixing of non-bridging oxygens and of high-coordinated aluminum make significant contributions to the overall configurational entropy and heat capacity of the melts, as does the mixing of various bridging oxygens and of tetrahedral network cations. Other, less well known, types of increase in disorder with temperature may be important as well.  相似文献   
10.
Using geographic information systems (GIS) software and geostatistical techniques, we utilized three decades of water-column chlorophyll a data to examine the relative importance of autochthonous versus allochthonous sources of reduced carbon to benthic communities that occur from the northern Bering to the eastern Beaufort Sea shelf. Spatial trend analyses revealed areas of high benthic biomass (>300 g m−2) and chlorophyll (>150 mg m−2) on both the southern and northern Chukchi shelf; both areas are known as depositional centers for reduced organic matter that originates on the Bering Sea shelf and is advected northward in Anadyr and Bering shelf water masses. We found a significant correlation between biomass and chlorophyll a in the Chukchi Sea, reflective of the strong benthic–pelagic coupling in a system that is utilized heavily by benthic-feeding marine mammals. In contrast, there was no significant correlation between biomass and chlorophyll in the Beaufort Sea, which by comparison, is considerably less productive (biomass and chlorophyll, <75 g m−2 and <50 mg m−2, respectively). One notable exception is an area of relatively high biomass (50–100 g m−2) and chlorophyll (80 mg m−2) near Barter Island in the eastern Beaufort Sea. Compared to other adjacent areas in the Beaufort Sea, the chlorophyll values in the vicinity of Barter Island were considerably higher and likely reflect a long-hypothesized upwelling in that area and close coupling between the benthos and autochthonous production. In the Bering Sea, a drop in benthic biomass in 1994 compared with previous measurements (1974–1993) may support earlier observations that document a decline in biomass that began between the 1980s and 1990s in the Chirikov Basin and south of St. Lawrence Island. The results of this study indicate that the benthos is an excellent long-term indicator of both local and physical advective processes. In addition, this work provides further evidence that secondary production on arctic shelves can be significantly augmented by reduced carbon advected from highly productive adjacent shelves.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号