首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
大气科学   5篇
  2021年   1篇
  2016年   1篇
  2015年   1篇
  2013年   1篇
  2006年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
2.
Despite recent advances in supercomputing, current general circulation models poorly represent the variability associated with organized tropical convection. In a recent study, the authors have shown, in the context of a paradigm two baroclinic mode system, that a stochastic multicloud convective parameterization based on three cloud types (congestus, deep and stratiform) can be used to improve the variability and the dynamical structure of tropical convection. Here, the stochastic multicloud model is modified with a lag type stratiform closure and augmented with an explicit mechanism for congestus detrainment moistening. These modifications improve the representation of intermittent coherent structures such as synoptic and mesoscale convective systems. Moreover, the new stratiform-lag closure allows for increased robustness of the coherent features of the model with respect to the amount of stochastic noise and leading to a multi-scale organization of slowly moving waves envelopes in which short-lived and chaotic convective events persist. Congestus cloud decks dominate the suppressed-dry phase of the wave envelopes. The simulations with the new closure have a higher amount of stochastic noise and result in a Walker type circulation with realistic mean and coherent variability which surpasses results of previous deterministic and stochastic multicloud models in the same parameter regime. Further, deterministic mean field limit equations (DMFLE) for the stochastic multicloud model are considered. Aside from providing a link to the deterministic multicloud parameterization, the DMFLE allow a judicious way of determining the amount of deterministic and stochastic “chaos” in the system. It is shown that with the old stratiform heating closure, the stochastic process accounts for most of the chaotic behavior. The simulations with the new stratiform heating closure exhibit a mixture of stochastic and deterministic chaos. The highly chaotic dynamics in the simulations with congestus detrainment mechanism is due to the strongly nonlinear and numerically stiff deterministic dynamics. In the latter two cases, the DMFLE can be viewed as a “standalone” parameterization, which is capable of capturing some dynamical features of the stochastic parameterization. Furthermore, it is shown that, in spatially extended simulations, the stochastic multicloud model can capture qualitatively two local statistical features of the observations: long and short auto-correlation times of moisture and precipitation, respectively and the approximate power-law in the probability density of precipitation event size for large precipitation events. The latter feature is not reproduced in the column simulations. This fact underscores the importance of gravity waves and large scale moisture convergence.  相似文献   
3.
Shin  Hyun-Geun  Khouider  Boualem 《Climate Dynamics》2021,56(11):3749-3773

The effect of equatorially trapped waves on the movement of tropical cyclones (TC) is studied numerically based on a two-dimensional barotropic model in a beta-plane approximation. According to recent studies, equatorially trapped waves contribute to the genesis of TCs. It is thus natural to assume that these waves affect also the movement of the TC. The effect of three types of equatorially trapped waves, namely Kelvin, Rossby, and n = 0 eastward inertio-Gravity (EIG) waves, on the TC trajectory is investigated with a focus on the sensitivity on some key physical parameters such as the wavenumber and wavespeed. Using a simple barotropic model forced by a prescribed baroclinic flow, the barotropic response to equatorially trapped waves is simulated for a period of 50 days, under various wave parameter configurations. This response is then used as a background flow where TC’s can evolve and propagate. TC-like flows are injected into this wavefield background at arbitrary times during the simulation, and the TC trajectories are tracked and recorded for 48h after the injection time. The resulting TC trajectory patterns with respect to the injection times and wave parameters appear to be stochastic and the mean paths and the associated standard deviations are calculated and reported here. The statistics are different for different wave types. Kelvin waves make shorter length of TC trajectories and small divergence of direction. On the contrary, Rossby waves cause rather dramatic changes in the TC path and yield longer trajectories. Meanwhile, TCs in EIG waves maintain fairly the same direction and typically have longer trajectories though less dramatic. A robustness test using a random forcing instead has also been conducted.

  相似文献   
4.
Recent observational analysis reveals the central role of three cloud types, congestus, stratiform, and deep-convective cumulus clouds, in the dynamics of large scale convectively coupled Kelvin waves, westward propagating 2-day waves, and the Madden–Julian oscillation. Recently, a systematic model convective parametrization highlighting the dynamic role of the three cloud types has been developed by the authors involving two baroclinic modes of vertical structure: a deep-convective heating mode and a second mode with low level heating and cooling corresponding, respectively, to congestus and stratiform clouds. The model includes a systematic moisture equation where the lower troposphere moisture increases through detrainment of shallow cumulus clouds, evaporation of stratiform rain, and moisture convergence and decreases through deep-convective precipitation and also a nonlinear switch which favors either deep or congestus convection depending on the relative dryness of the middle troposphere. The detailed nonlinear evolution of large scale convectively coupled waves in the model parametrization is studied here in a chaotic intermittent regime of the nonlinear dynamics associated with weaker mean radiative cooling where such waves are isolated in space and time. This regime is utilized to elucidate in a clean fashion several novel features of the model parametrization. In particular, four stages of nonlinear wave evolution occur: in the preconditioning and birth stages, the role of congestus moistening and second baroclinic convergence are crucial while in the dying stage of the large scale convectively coupled wave, the role of the nonlinear switch, and the drying of the troposphere are essential. In the mature phase, the large scale features of the convectively coupled waves resemble those in observations of convectively coupled Kelvin waves including the propagation speed, wave tilt, temperature, heating, and velocity structure.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号