首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   5篇
大气科学   2篇
地球物理   9篇
地质学   8篇
海洋学   1篇
天文学   8篇
自然地理   1篇
  2020年   1篇
  2017年   7篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   5篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  1998年   1篇
  1989年   1篇
排序方式: 共有29条查询结果,搜索用时 245 毫秒
1.
Observed summer (May–October) rainfall in Myanmar for the period 1981–2010 was used to investigate the interannual variability of summer monsoon rainfall over Myanmar. Empirical orthogonal function, the sequential Mann-Kendall test, power spectrum analysis, and singular value decomposition (SVD) were deployed in the study. Results from spectral analysis showed that the variability of rainfall over Myanmar exhibits a 2- to 6-year cycle. An abrupt change in rainfall over the country was noted in 1992. There was a notable increasing rainfall trend from 1989. After the sudden change, the mean rainfall increased by 36.1 mm, compared with the mean rainfall before the sudden change, and was associated with a rise in temperature of about 0.2 °C. An increase in heavy rainfall days was observed from the early 1990s to 2010. IOD and ENSO play an important role in the interannual variability of the summer rainfall over Myanmar. The covariability between rainfall over Myanmar and Indian Ocean SST generally suggests that a positive IOD mode is associated with suppressed rainfall in the central and northern parts of Myanmar. During a negative IOD mode, nearly the whole Myanmar experiences enhanced rainfall, which is associated with devastating socioeconomic impacts. The covariability between the rainfall over Myanmar and the sea surface temperature in the Pacific Ocean in the first and second SVD modes was dominated by warming in the east and central Pacific—an El Niño-like pattern—resulting in dry conditions in central Myanmar.  相似文献   
2.
Mineral inventories of enstatite chondrites; (EH and EL) are strictly dictated by combined parameters mainly very low dual oxygen (fO2) and sulfur (fS2) fugacities. They are best preserved in the Almahata Sitta MS‐17, MS‐177 fragments, and the ALHA 77295 and MAC 88136 Antarctic meteorites. These conditions induce a stark change of the geochemical behavior of nominally lithophile elements to chalcophile or even siderophile and changes in the elemental partitioning thus leading to formation of unusual mineral assemblages with high abundance of exotic sulfide species and enrichment in the metallic alloys, for example, silicides and phosphides. Origin and mode of formation of these exotic chondrites, and their parental source regions could be best scrutinized by multitask research experiments of the most primitive members covering mineralogical, petrological, cosmochemical, and indispensably short‐lived isotopic chronology. The magnitude of temperature and pressure prevailed during their formation in their source regions could eventually be reasonably estimated: pre‐ and postaccretionary could eventually be deduced. The dual low fugacities are regulated by the carbon to oxygen ratios estimated to be >0.83 and <1.03. These parameters not only induce unusual geochemical behavior of the elements inverting many nominally lithophile elements to chalcophile or even siderophile or anthracophile. Structure and mineral inventories in EL3 and EH3 chondrites are fundamentally different. Yet EH3 and EL3 members store crucial information relevant to eventual source regions and importantly possible variation in C/O ratio in the course of their evolution. EL3 and EH3 chondrites contain trichotomous lithologies (1) chondrules and their fragments, (2) polygonal enstatite‐dominated objects, and (3) multiphase metal‐rich nodules. Mineralogical and cosmochemical inventories of lithologies in the same EL3 indicate not only similarities (REE inventory and anomalies in oldhamite) but also distinct differences (sinoite‐enstatite‐graphite relationship). Oldhamite in chondrules and polygonal fragments in EL3 depict negative Eu anomaly attesting a common cosmochemical source. Metal‐dominated nodules in both EL3 and EH3 are conglomerates of metal clasts and sulfide fragments in EH3 and concentrically zoned C‐bearing metal micropebbles (≥25 μm ≤50 μm) in EL3 thus manifesting a frozen in unique primordial accretionary metal texture and composition. Sinoite‐enstatite‐diopside‐graphite textures reveal a nucleation and growth strongly suggestive of fluctuating C/O ratio during their nucleation and growth in the source regions. Mineral inventories, sulfide phase relations, sinoite‐enstatite‐graphite intergrowth, carbon and nitrogen isotopic compositions of graphite, spatial nitrogen abundance in graphite in metal nodules, and last but not least 129I/129Xe and 53Mn/53Cr systematics negate any previously suggested melting episode, pre‐accretionary or dynamic, in parental asteroids.  相似文献   
3.
Two petrographic settings of carbonaceous components, mainly filling open fractures and occasionally enclosed in shock‐melt veins, were found in the recently fallen Tissint Martian meteorite. The presence in shock‐melt veins and the deuterium enrichments (δD up to +1183‰) of these components clearly indicate a pristine Martian origin. The carbonaceous components are kerogen‐like, based on micro‐Raman spectra and multielemental ratios, and were probably deposited from fluids in shock‐induced fractures in the parent rock of Tissint. After precipitation of the organic matter, the rock experienced another severe shock event, producing the melt veins that encapsulated a part of the organic matter. The C isotopic compositions of the organic matter (δ13C = ?12.8 to ?33.1‰) are significantly lighter than Martian atmospheric CO2 and carbonate, providing a tantalizing hint for a possible biotic process. Alternatively, the organic matter could be derived from carbonaceous chondrites, as insoluble organic matter from the latter has similar chemical and isotopic compositions. The presence of organic‐rich fluids that infiltrated rocks near the surface of Mars has significant implications for the study of Martian paleoenvironment and perhaps to search for possible ancient biological activities on Mars.  相似文献   
4.
Volcanoes with silica-rich and highly viscous magma tend to produce violent explosive eruptions that result in disasters in local communities and that strongly affect the global environment. We examined the timing of 11 eruptive events that produced silica-rich magma from four volcanoes in Japan (Mt. Fuji, Mt. Usu, Myojin-sho, and Satsuma-Iwo-jima) over the past 306 years (from AD 1700 to AD 2005). Nine of the 11 events occurred during inactive phases of solar magnetic activity (solar minimum), which is well indexed by the group sunspot number. This strong association between eruption timing and the solar minimum is statistically significant to a confidence level of 96.7%. This relationship is not observed for eruptions from volcanoes with relatively silica-poor magma, such as Izu-Ohshima. It is well known that the cosmic-ray flux is negatively correlated with solar magnetic activity, as the strong magnetic field in the solar wind repels charged particles such as galactic cosmic rays that originate from outside of the solar system. The strong negative correlation observed between the timing of silica-rich eruptions and solar activity can be explained by variations in cosmic-ray flux arising from solar modulation. Because silica-rich magma has relatively high surface tension (~ 0.1 Nm?1), the homogeneous nucleation rate is so low that such magma exists in a highly supersaturated state without considerable exsolution, even when located relatively close to the surface, within the penetration range of cosmic-ray muons (1–10 GeV). These muons can contribute to nucleation in supersaturated magma, as documented by many authors studying a bubble chamber, via ionization loss. This radiation-induced nucleation can lead to the pre-eruptive exsolution of H2O in the silica-rich magma. We note the possibility that the 1991 Mt. Pinatubo eruption was triggered by the same mechanism: an increase in cosmic-ray flux triggered by Typhoon Yunya, as a decrease in atmospheric pressure results in an increase in cosmic-ray flux. We also speculate that the snowball Earth event was triggered by successive large-scale volcanic eruptions triggered by increased cosmic-ray flux due to nearby supernova explosions.  相似文献   
5.
The linkage between multi-decadal climate variability and activity of the sun has been long debated based upon observational evidence from a large number of instrumental and proxy records. It is difficult to evaluate the exact role of each of solar parameters on climate change since instrumentally measured solar related parameters such as Total Solar irradiance (TSI), Ultra Violet (UV), solar wind and Galactic Cosmic Rays (GCRs) fluxes are more or less synchronized and only extend back for several decades. Here we report tree-ring carbon-14 based record of 11-year/22-year solar cycles during the Maunder Minimum (17th century) and the early Medieval Maximum Period (9–10th century) to reconstruct the state of the sun and the flux of incoming GCRs. The result strongly indicates that the influence of solar cycles on climate is persistent beyond the period after instrumental observations were initiated. We find that the actual lengths of solar cycles vary depending on the status of long-term solar activity, and that periodicity of the surface air temperatures are also changing synchronously. Temperature variations over the 22-year cycles seem, in general, to be more significant than those associated with the 11-year cycles and in particular around the grand solar minima such as the Maunder Minimum (1645–1715 AD). The polarity dependence of cooling events found in this study suggests that the GCRs can not be excluded from the possible drivers of decadal to multi-decadal climate change.  相似文献   
6.
Three-dimensional structures of the ionospheric dynamo currents are examined using the neutral winds in a general circulation model of the middle atmosphere at Kyushu University. A quasi-three-dimensional ionospheric dynamo model is constructed assuming an infinite parallel conductivity in the ionosphere. This model is able to simulate both the equatorial electrojet and the global Sq current system successfully. The simulated results reveal that the equatorial electrojet is confined in quite narrow latitudes around the equator accompanied with meridional current circulations and satisfies a non-divergent structure mainly within the E region. A vertically stratified double layered structure is seen in the east–west current density near the focus latitude of the global Sq current system. It is shown that the stratified structure mainly consists of the east–west Hall current associated with the eastward wind of zonal wavenumbers 1 and 2 in the lower altitudes and the westward wind of zonal wavenumber 2 in the upper altitudes. The day-to-day variation of the neutral winds can significantly vary the induced ionospheric dynamo current system, which is recognized as changes of the focus latitude and/or the maximum value of the equatorial electrojet.  相似文献   
7.
Heavily shocked meteorites contain various types of high‐pressure polymorphs of major minerals (olivine, pyroxene, feldspar, and quartz) and accessory minerals (chromite and Ca phosphate). These high‐pressure minerals are micron to submicron sized and occur within and in the vicinity of shock‐induced melt veins and melt pockets in chondrites and lunar, howardite–eucrite–diogenite (HED), and Martian meteorites. Their occurrence suggests two types of formation mechanisms (1) solid‐state high‐pressure transformation of the host‐rock minerals into monomineralic polycrystalline aggregates, and (2) crystallization of chondritic or monomineralic melts under high pressure. Based on experimentally determined phase relations, their formation pressures are limited to the pressure range up to ~25 GPa. Textural, crystallographic, and chemical characteristics of high‐pressure minerals provide clues about the impact events of meteorite parent bodies, including their size and mutual collision velocities and about the mineralogy of deep planetary interiors. The aim of this article is to review and summarize the findings on natural high‐pressure minerals in shocked meteorites that have been reported over the past 50 years.  相似文献   
8.
Abstract— The high‐pressure polymorphs of olivine, pyroxene, and plagioclase in or adjacent to shock melt veins (SMVs) in two L6 chondrites (Sahara 98222 and Yamato 74445) were investigated to clarify the related transformation mechanisms and to estimate the pressure‐temperature conditions of the shock events. Wadsleyite and jadeite were identified in Sahara 98222. Wadsleyite, ringwoodite, majorite, akimotoite, jadeite, and lingunite (NaAlSi3O8‐hollandite) were identified in Yamato 74445. Wadsleyite nucleated along the grain boundaries and fractures of original olivine. The nucleation and growth of ringwoodite occurred along the grain boundaries of original olivine, and as intracrystalline ringwoodite lamellae within original olivine. The nucleation and growth of majorite took place along the grain boundaries or fractures in original enstatite. Jadeite‐containing assemblages have complicated textures containing “particle‐like,” “stringer‐like,” and “polycrystalline‐like” phases. Coexistence of lingunite and jadeite‐containing assemblages shows a vein‐like texture. We discuss these transformation mechanisms based on our textural observations and chemical composition analyses. The shock pressure and temperature conditions in the SMVs of these meteorites were also estimated based on the mineral assemblages in the SMVs and in comparison with static high‐pressure experimental results as follows: 13–16 GPa, >1900 °C for Sahara 98222 and 17–24 GPa, >2100 °C for Yamato 74445.  相似文献   
9.
Iron oxide precipitate in seepage of groundwater from a landslide slip zone   总被引:2,自引:0,他引:2  
Orange precipitate was collected at the mouth of groundwater drainage tubes from the Kumanashi Landslide slip zone in Toyama prefecture, Northwest Japan. Data from XRF, X-ray diffraction, and Mössbauer spectroscopy determined the precipitate as hydrous ferric oxide (HFO) bearing multi-elements such as phosphorous, silica, calcium, etc. The occurrence of HFO may indicate an oxidation of ferrous iron in the percolated groundwater from the slip zone. Moreover, the precipitate iron should be mobilized with groundwater circulation from the slip zone, whose reducing condition was determined by the iron speciation on the same type of landslide profiles within the study area in previous studies. The HFO precipitate may be considered as a secondary reliable indicator to locate the seepage of a slip zone on surface, especially for a landslide newly investigated under wet-warm climate.  相似文献   
10.
Estimates of daily lake evaporation based on energy‐budget data are poor because of large errors associated with quantifying change in lake heat storage over periods of less than about 10 days. Energy‐budget evaporation was determined during approximately biweekly periods at a northern Minnesota, USA, lake for 5 years. Various combinations of shortwave radiation, air temperature, wind speed, lake‐surface temperature, and vapour‐pressure difference were related to energy‐budget evaporation using linear‐regression models in an effort to determine daily evaporation without requiring the heat‐storage term. The model that combined the product of shortwave radiation and air temperature with the product of vapour‐pressure difference and wind speed provided the second best fit based on statistics but provided the best daily data based on comparisons with evaporation determined with the eddy‐covariance method. Best‐model daily values ranged from ?0.6 to 7.1 mm/day over a 5‐year period. Daily averages of best‐model evaporation and eddy‐covariance evaporation were nearly identical for all 28 days of comparisons with a standard deviation of the differences between the two methods of 0.68 mm/day. Best‐model daily evaporation also was compared with two other evaporation models, Jensen–Haise and a mass‐transfer model. Best‐model daily values were substantially improved relative to Jensen–Haise and mass‐transfer values when daily values were summed over biweekly energy‐budget periods for comparison with energy‐budget results.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号