首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   1篇
大气科学   1篇
地球物理   2篇
地质学   2篇
  2016年   1篇
  2015年   1篇
  2012年   1篇
  2010年   2篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
We developed the first tree-ring chronology, based on 73 cores from 29 Pinus tabulaeformis trees, for the Xiaolong Mountain area of central China, a region at the boundary of the Asian summer monsoon. This chronology exhibits significant (at 0.01 level) positive correlations with precipitation in May and June, and negative correlations with temperature in May, June and July. Highest linear correlation is observed between tree growth and the seasonalized (April–July) precipitation, suggesting that tree rings tend to integrate the monthly precipitation signals. Accordingly, the April–July total precipitation was reconstructed back to 1629 using these tree rings, explaining 44.7?% of the instrumental variance. A severe drought occurred in the area during the 1630s–1640s, which may be related to the weakened Asian summer monsoon caused by a low land-sea thermal gradient. The dry epoch during the 1920s–1930s and since the late 1970s may be explained by the strengthened Hadley circulation in a warmer climate. The dry (wet) epochs of the 1920s–1930s (the 1750s and 1950s) occurred during the warm (cold) phases of the El Ni?o-Southern Oscillation and the Pacific Decadal Oscillation that are often associated with weakened (strengthened) East Asian summer monsoon. These relationships indicate significant teleconnections operating over the past centuries in central China related to large-scale synoptic features.  相似文献   
2.
Archeoseismological studies of the Kurmenty settlement have proved the seismogenic origin of the deformation in the walls at this site. The radiocarbon age of the first seismic event damaged the walls of the settlement is 7th century AD. The second seismic event occurred a few centuries later, probably in the late Middle Ages. The strongest seismic events of North Tien Shan occurred in the late 19th–early 20th century as the Chilik (1889, M = 8.4) and Kebin (1911, M = 7.9) also damaged the walls of the Kurmenty settlement. The local shaking intensity during these seismic events was I ≥ VII on MSK-64 scale.  相似文献   
3.
Knowledge and understanding of shore platform erosion and tidal notch development in the tropics and subtropics relies mainly on short‐term studies conducted on recently deposited carbonate rocks, predominantly Holocene and Quaternary reef limestones and aeolianites. This paper presents erosion rates, measured over a 10 year period on notches and platforms developed on the Permian, Ratburi limestone at Phang Nga Bay, Thailand. In so doing it contributes to informing a particular knowledge gap in our understanding of the erosion dynamics of shore platform and tidal notch development in the tropics and subtropics – notch erosion rates on relatively hard, ancient limestones measured directly on the rock surface using a micro‐erosion meter (MEM) over time periods of a decade or more. The average intertidal erosion rate of 0.231 mm/yr is lower than erosion rates measured over 2–3 years on recent, weaker carbonate rocks. Average erosion rates at Phang Nga vary according to location and site and are, in rank order from highest to lowest: Mid‐platform (0.324 mm/yr) > Notch floor (0.289 mm/yr) > Rear notch wall (0.228 mm/yr) > Lower platform (0.140 mm/yr) > Notch roof (0.107 mm/yr) and Supratidal (0.095 mm/yr). The micro‐relief of the eroding rock surfaces in each of these positions exhibits marked differences that are seemingly associated with differences in dominant physical and bio‐erosion processes. The results begin to help inform knowledge of longer term shore platform erosion dynamics, models of marine notch development and have implications for the use of marine notches as indicators of changes in sea level and the duration of past sea levels. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
4.
The Numerical Modeling of Mantle Convection (NMMC3D) application is calculating mantle convection models in 3D Cartesian domain. Our main goal is to study the structure and the surface manifestation (topographic and geoid anomalies) of the mantle plumes. The parameter study support tools of the P-GRADE grid Portal give an effective possibility to make an systematic investigation of the parameters influencing the character of mantle plumes. In collaboration with the MTA SZTAKI Application Porting Centre the NMMC3D has been ported to the SEE-GRID-SCI infrastructure. The paper introduces the steps that were taken to enable NMMC3D application on gLite based grid infrastructure and some results of the calculations. The main parameters influencing the mantle convection are the Rayleigh-number and the viscosity distribution of the mantle. In this paper the effect of these parameters is investigated on the thermal structure and surface manifestations of mantle plumes.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号