首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25篇
  免费   0篇
测绘学   2篇
大气科学   16篇
地球物理   2篇
地质学   4篇
自然地理   1篇
  2021年   2篇
  2018年   1篇
  2016年   2篇
  2014年   3篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2008年   2篇
  2006年   4篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  1996年   1篇
  1987年   1篇
排序方式: 共有25条查询结果,搜索用时 15 毫秒
1.
2.
Large ensembles of coupled atmosphere–ocean general circulation model (AOGCM) simulations are required to explore modelling uncertainty and make probabilistic predictions of future transient climate change at regional scales. These are not yet computationally feasible so we have developed a technique to emulate the response of such an ensemble by scaling equilibrium patterns of climate change derived from much cheaper “slab” model ensembles in which the atmospheric component of an AOGCM is coupled to a mixed-layer ocean. Climate feedback parameters are diagnosed for each member of a slab model ensemble and used to drive an energy balance model (EBM) to predict the time-dependent response of global surface temperature expected for different combinations of uncertain AOGCM parameters affecting atmospheric, land and sea-ice processes. The EBM projections are then used to scale normalised patterns of change derived for each slab member, and hence emulate the response of the relevant atmospheric model version when coupled to a dynamic ocean, in response to a 1% per annum increase in CO2. The emulated responses are validated by comparison with predictions from a 17 member ensemble of AOGCM simulations, constructed from variants of HadCM3 using the same parameter combinations as 17 members of the slab model ensemble. Cross-validation permits estimation of the spatial and temporal dependence of emulation error, and also allows estimation of a correction field to correct discrepancies between the scaled equilibrium patterns and the transient response, reducing the emulation error. Emulated transient responses and their associated errors are obtained from the slab ensemble for 129 pseudo-HadCM3 versions containing multiple atmospheric parameter perturbations. These are combined to produce regional frequency distributions for the transient response of annual surface temperature change and boreal winter precipitation change. The technique can be extended to any surface climate variable demonstrating a scaleable, approximately linear response to forcing.  相似文献   
3.
Summary. In 1984, the Australian Bureau of Mineral Resources and the Geological Survey of Queensland recorded a regional seismic reflection profile of over 800 km length from the eastern part of the Eromanga Basin to the Beenleigh Block east of the Clarence Moreton Basin. A relatively transparent upper crustal basement with an underlying, more reflective lower crust is characteristic of much of the region. Prominent westerly dipping reflectors occur well below the sediments of the eastern margin of the Clarence Moreton Basin and the adjacent Beenleigh Block, and provide some of the most interesting features of the entire survey. A wide angle reflection/refraction survey of 192 km length and an expanding reflection spread of 25 km length were recorded across the Nebine Ridge. The only clear deep reflectors are interpreted as P-to-SV or SV-to-P converted reflections from a mid-crustal boundary at a depth of about 17 km. The combined Nebine Ridge data provide well-constrained P and S wave velocity models of the upper crust, and suggest a crustal structure quite different from that beneath the adjacent Mesozoic basins.  相似文献   
4.
We describe results from a 57-member ensemble of transient climate change simulations, featuring simultaneous perturbations to 54 parameters in the atmosphere, ocean, sulphur cycle and terrestrial ecosystem components of an earth system model (ESM). These emissions-driven simulations are compared against the CMIP3 multi-model ensemble of physical climate system models, used extensively to inform previous assessments of regional climate change, and also against emissions-driven simulations from ESMs contributed to the CMIP5 archive. Members of our earth system perturbed parameter ensemble (ESPPE) are competitive with CMIP3 and CMIP5 models in their simulations of historical climate. In particular, they perform reasonably well in comparison with HadGEM2-ES, a more sophisticated and expensive earth system model contributed to CMIP5. The ESPPE therefore provides a computationally cost-effective tool to explore interactions between earth system processes. In response to a non-intervention emissions scenario, the ESPPE simulates distributions of future regional temperature change characterised by wide ranges, and warm shifts, compared to those of CMIP3 models. These differences partly reflect the uncertain influence of global carbon cycle feedbacks in the ESPPE. In addition, the regional effects of interactions between different earth system feedbacks, particularly involving physical and ecosystem processes, shift and widen the ESPPE spread in normalised patterns of surface temperature and precipitation change in many regions. Significant differences from CMIP3 also arise from the use of parametric perturbations (rather than a multimodel ensemble) to represent model uncertainties, and this is also the case when ESPPE results are compared against parallel emissions-driven simulations from CMIP5 ESMs. When driven by an aggressive mitigation scenario, the ESPPE and HadGEM2-ES reveal significant but uncertain impacts in limiting temperature increases during the second half of the twenty-first century. Emissions-driven simulations create scope for development of errors in properties that were previously prescribed in coupled ocean–atmosphere models, such as historical CO2 concentrations and vegetation distributions. In this context, historical intra-ensemble variations in the airborne fraction of CO2 emissions, and in summer soil moisture in northern hemisphere continental regions, are shown to be potentially useful constraints, subject to uncertainties in the relevant observations. Our results suggest that future climate-related risks can be assessed more comprehensively by updating projection methodologies to support formal combination of emissions-driven perturbed parameter and multi-model earth system model simulations with suitable observational constraints. This would provide scenarios underpinned by a more complete representation of the chain of uncertainties from anthropogenic emissions to future climate outcomes.  相似文献   
5.
Numerous approaches exist for the prediction of the settlement improvement offered by the vibro-replacement technique in weak or marginal soil deposits. The majority of the settlement prediction methods are based on the unit cell assumption, with a small number based on plane strain or homogenisation techniques. In this paper, a comprehensive review and assessment of the more popular settlement prediction methods is carried out with a view to establishing which method(s) is/are in best agreement with finite element predictions from a series of PLAXIS 2D axisymmetric analyses on an end-bearing column. The Hardening Soil Model in PLAXIS 2D has been used to model the behaviour of both the granular column material and the treated soft clay soil. This study has shown that purely elastic settlement prediction methods overestimate the settlement improvement for large modular ratios, while the methods based on elastic–plastic theory are in better agreement with finite element predictions at higher modular ratios. In addition, a parameter sensitivity study has been carried out to establish the influence of a range of different design parameters on predictions obtained using a selection of elastic–plastic methods.  相似文献   
6.
We investigate how weather affects the UK’s electricity network, by examining past data of weather-related faults on the transmission and distribution networks. By formalising the current relationship between weather-related faults and weather, we use climate projections from a regional climate model (RCM) to quantitatively assess how the frequency of these faults may change in the future. This study found that the incidences of both lightning and solar heat faults are projected to increase in the future. There is evidence that the conditions that cause flooding faults may increase in the future, but a reduction cannot be ruled out. Due to the uncertainty associated with future wind projections, there is no clear signal associated with the future frequency of wind and gale faults, however snow, sleet and blizzard faults are projected to decrease due to a reduction in the number of snow days.  相似文献   
7.
Groundwater discharge along a channelized Coastal Plain stream   总被引:1,自引:1,他引:0  
In the Coastal Plain of the southeastern USA, streams have commonly been artificially channelized for flood control and agricultural drainage. However, groundwater discharge along such streams has received relatively little attention. Using a combination of stream- and spring-flow measurements, spring temperature measurements, temperature profiling along the stream-bed, and geologic mapping, we delineated zones of diffuse and focused discharge along Little Bayou Creek, a channelized, first-order perennial stream in western Kentucky. Seasonal variability in groundwater discharge mimics hydraulic-head fluctuations in a nearby monitoring well and spring-discharge fluctuations elsewhere in the region, and is likely to reflect seasonal variability in recharge. Diffuse discharge occurs where the stream is incised into the semi-confined regional gravel aquifer, which is comprised of the Mounds Gravel. Focused discharge occurs upstream where the channel appears to have intersected preferential pathways within the confining unit. Seasonal fluctuations in discharge from individual springs are repressed where piping results in bank collapse. Thereby, focused discharge can contribute to the morphological evolution of the stream channel.  相似文献   
8.
The science and management of terrestrial ecosystems require accurate, high-resolution mapping of surface water. We produced a global, 30-m-resolution inland surface water dataset with an automated algorithm using Landsat-based surface reflectance estimates, multispectral water and vegetation indices, terrain metrics, and prior coarse-resolution water masks. The dataset identified 3,650,723 km2 of inland water globally – nearly three quarters of which was located in North America (40.65%) and Asia (32.77%), followed by Europe (9.64%), Africa (8.47%), South America (6.91%), and Oceania (1.57%). Boreal forests contained the largest portion of terrestrial surface water (25.03% of the global total), followed by the nominal ‘inland water’ biome (16.36%), tundra (15.67%), and temperate broadleaf and mixed forests (13.91%). Agreement with respect to the Moderate-resolution Imaging Spectroradiometer water mask and Landsat-based national land-cover datasets was very high, with commission errors <4% and omission errors <14% relative to each. Most of these were accounted for in the seasonality of water cover, snow and ice, and clouds – effects which were compounded by differences in image acquisition date relative to reference datasets. The Global Land Cover Facility (GLCF) inland surface water dataset is available for open access at the GLCF website (http://www.landcover.org).  相似文献   
9.
The land/sea warming contrast is a phenomenon of both equilibrium and transient simulations of climate change: large areas of the land surface at most latitudes undergo temperature changes whose amplitude is more than those of the surrounding oceans. Using idealised GCM experiments with perturbed SSTs, we show that the land/sea contrast in equilibrium simulations is associated with local feedbacks and the hydrological cycle over land, rather than with externally imposed radiative forcing. This mechanism also explains a large component of the land/sea contrast in transient simulations as well. We propose a conceptual model with three elements: (1) there is a spatially variable level in the lower troposphere at which temperature change is the same over land and sea; (2) the dependence of lapse rate on moisture and temperature causes different changes in lapse rate upon warming over land and sea, and hence a surface land/sea temperature contrast; (3) moisture convergence over land predominantly takes place at levels significantly colder than the surface; wherever moisture supply over land is limited, the increase of evaporation over land upon warming is limited, reducing the relative humidity in the boundary layer over land, and hence also enhancing the land/sea contrast. The non-linearity of the Clausius–Clapeyron relationship of saturation specific humidity to temperature is critical in (2) and (3). We examine the sensitivity of the land/sea contrast to model representations of different physical processes using a large ensemble of climate model integrations with perturbed parameters, and find that it is most sensitive to representation of large-scale cloud and stomatal closure. We discuss our results in the context of high-resolution and Earth-system modelling of climate change.  相似文献   
10.
 Atmosphere-only general circulation models are shown to be a useful tool for detecting an anthropogenic effect on climate and understanding recent climate change. Ensembles of atmospheric runs are all forced with the same observed changes in sea surface temperatures and sea-ice extents but differ in terms of the combinations of anthropogenic effects included. Therefore, our approach aims to detect the `immediate' anthropogenic impact on the atmosphere as opposed to that which has arisen via oceanic feedbacks. We have adapted two well-used detection techniques, pattern correlations and fingerprints, and both show that near-decadal changes in the patterns of zonal mean upper air temperature are well simulated, and that it is highly unlikely that the observed changes could be accounted for by sea surface temperature variations and internal variability alone. Furthermore, we show that for zonally averaged upper air temperature, internal `noise' in the atmospheric model is small enough that a signal emerges from the data even on interannual time scales; this would not be possible in a coupled ocean-atmosphere general circulation model. Finally, although anthropogenic forcings have had a significant impact on global mean land surface temperature, we find that their influence on the pattern of local deviations about this mean is so far undetectable. In order to achieve this in the future, as the signal grows, it will also be important that the response of the Northern Hemisphere mid-latitude westerly flow to changing sea surface temperatures is well simulated in climate model detection studies. Received: 3 December 1999 / Accepted: 30 October 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号