首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
大气科学   1篇
地质学   1篇
  2009年   1篇
  2001年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
An actively controlled wind tunnel equipped with multiple fansand airfoils has been developed, mainly for the purpose of reproducing the atmospheric boundary layer (ABL) for wind engineering applications. Various fluctuating flows can be achieved in this wind tunnel by altering the input data of the fans and airfoils through computer control. In this study, the ABL is physically simulated in this wind tunnel, and particular attention ispaid to the simulation of the profile of Reynolds stress. The method of generating the fluctuating flow and the experimental results of reproducing the ABL are presented. As the results show, the spatial distribution of Reynolds stress is satisfactorily simulated, and the profiles of other statisticalturbulent parameters, such as mean velocity, turbulent intensity, integral scale and power spectrum are successfully reproduced simultaneously.  相似文献   
2.
An extraordinarily large-scale landslide with a volume of about 200 million m3, a width of about 1,600 m, and a height of about 750 m occurred on 2004 March 26, 13:45 local time, on a steep caldera wall on the northwest flank of Mt. Bawakaraeng (2,830 m) at the headwater of the Jeneberang River in South Sulawesi, Indonesia. The debris avalanche extended about 7 km from the headwater and buried the river valley, causing devastating damage. There are a great many calderas in the world, notably Japan. If a large-scale sector collapse were to occur in a heavily populated area, it would be a devastating disaster for the people living in the area. The aim of this paper is to outline such a landslide and explain its mechanism of occurrence. We evaluated the stability of the original slope before the landslide using the limit equilibrium method and the finite-element-based shear strength reduction method (SSRFEM) with the strength reduction factor. The limit equilibrium method showed that a rise in the groundwater level caused the landslide. Although the critical slip surface predicted by the SSRFEM was shallower than that of the actual slip surface, the end positions of the actual and predicted slip surfaces were almost the same. Moreover, the end position of the critical slip surface before the landslide—the headwater of the Jeneberang River—was a knick point at which the slope inclination became steeper. SSRFEM analysis may be useful for evaluating the slope stability of large-scale landslides, because the critical slip surface predicted by it was close to the actual surface, even though we assumed homogenous conditions without information on the degree of weathering or ground properties. As the knick point formed at the end of the critical slip surface and is equivalent to the end of the actual slip surface, we assume such topographic features to be a primary geomorphologic cause of the landslide.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号