首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
大气科学   5篇
地球物理   1篇
  2015年   1篇
  2012年   1篇
  2010年   1篇
  2004年   1篇
  2002年   1篇
  1999年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
Abstract

To evaluate future climate change in the middle atmosphere and the chemistry–climate interaction of stratospheric ozone, we performed a long-term simulation from 1960 to 2050 with boundary conditions from the Intergovernmental Panel on Climate Change A1B greenhouse gas scenario and the World Meteorological Organization Ab halogen scenario using the chemistry–climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC). In addition to this standard simulation we performed five sensitivity simulations from 2000 to 2050 using the rerun files of the simulation mentioned above. For these sensitivity simulations we used the same model setup as in the standard simulation but changed the boundary conditions for carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), and ozone-depleting substances (ODS). In the first sensitivity simulation we fixed the mixing ratios of CO2, CH4, and N2O in the boundary conditions to the amounts for 2000. In each of the four other sensitivity simulations we fixed the boundary conditions of only one of CO2, CH4, N2O, or ODS to the year 2000.

In our model simulations the future evolution of greenhouse gases leads to significant cooling in the stratosphere and mesosphere. Increasing CO2 mixing ratios make the largest contributions to this radiative cooling, followed by increasing stratospheric CH4, which also forms additional H2O in the upper stratosphere and mesosphere. Increasing N2O mixing ratios makes the smallest contributions to the cooling. The simulated ozone recovery leads to warming of the middle atmosphere.

In the EMAC model the future development of ozone is influenced by several factors. 1) Cooler temperatures lead to an increase in ozone in the upper stratosphere. The strongest contribution to this ozone production is cooling due to increasing CO2 mixing ratios, followed by increasing CH4. 2) Decreasing ODS mixing ratios lead to ozone recovery, but the contribution to the total ozone increase in the upper stratosphere is only slightly higher than the contribution of the cooling by greenhouse gases. In the polar lower stratosphere a decrease in ODS is mainly responsible for ozone recovery. 3) Higher NOx and HOx mixing ratios due to increased N2O and CH4 lead to intensified ozone destruction, primarily in the middle and upper stratosphere, from additional NOx; in the mesosphere the intensified ozone destruction is caused by additional HOx. In comparison to the increase in ozone due to decreasing ODS, ozone destruction caused by increased NOx is of similar importance in some regions, especially in the middle stratosphere. 4) In the stratosphere the enhancement of the Brewer-Dobson circulation leads to a change in ozone transport. In the polar stratosphere increased downwelling leads to additional ozone in the future, especially at high northern latitudes. The dynamical impact on ozone development is higher at some altitudes in the polar stratosphere than the ozone increase due to cooler temperatures. In the tropical lower stratosphere increased residual vertical upward transport leads to a decrease in ozone.  相似文献   
3.
Sinnhuber  B.-M.  Müller  R.  Langer  J.  Bovensmann  H.  Eyring  V.  Klein  U.  Trentmann  J.  Burrows  J. P.  Künzi  K. F. 《Journal of Atmospheric Chemistry》1999,34(3):281-290
In this study measurements of mid-stratospheric Arctic ozone are compared with model simulations. The measurements obtained at Spitsbergen (79°N, 12°E) by ground based millimeter-wave radiometry exhibit large day to day variabilities as well as periods with low ozone. To interpret these measurements, calculations were made using the new photochemical box-trajectory model BRAPHO, with air parcel trajectories calculated from analyzed wind fields. Using a relatively simple approach, the model reproduces the observed ozone variability well, including inter-annual variations. The explanation for the observed ozone behavior is that at these altitudes ozone is determined by what we call dynamically controlled photochemistry. This means that the photochemical evolution of the ozone volume mixing ratio is mainly controlled by the atmospheric dynamics, in particular the solar zenith angle the air parcel has experienced.  相似文献   
4.
Airborne measurements of stratospheric ozone and N2O from the SCIAMACHY (Scanning Imaging Absorption Spectrometer) Validation and Utilization Experiment (SCIA-VALUE) are presented. The campaign was conducted in September 2002 and February–March 2003. The Airborne Submillimeter Radiometer (ASUR) observed stratospheric constituents like O3 and N2O, among others, spanning a latitude from 5°S to 80°N during the survey. The tropical ozone source regions show high ozone volume mixing ratios (VMRs) of around 11 ppmv at 33 km altitude, and the altitude of the maximum VMR increases from the tropics to the Arctic. The N2O VMRs show the largest value of 325 ppbv in the lower stratosphere, indicating their tropospheric origin, and they decrease with increasing altitude and latitude due to photolysis. The sub-tropical and polar mixing barriers are well represented in the N2O measurements. The most striking seasonal difference found in the measurements is the large polar descent in February–March. The observed features are interpreted with the help of SLIMCAT and Bremen Chemical Transport Model (CTMB) simulations. The SLIMCAT simulations are in good agreement with the measured O3 and N2O values, where the differences are within 1 ppmv for O3 and 15 ppbv for N2O. However, the CTMB simulations underestimate the tropical middle stratospheric O3 (1–1.5 ppmv) and the tropical lower stratospheric N2O (15–30 ppbv) measurements. A detailed analysis with various measurements and model simulations suggests that the biases in the CTMB simulations are related to its parameterised chemistry schemes.  相似文献   
5.
6.
Presented here are measurements of BrO and OClO performed by ground-based UV-visible zenith-sky viewing spectrometers developed by the Norwegian Institute for Air Research (NILU). Measurements were taken at Ny-Ålesund, Spitsbergen (79° N, 11° E), in winter and spring1996 and 1997 and at Andøya (69.3° N, 16° E) from summer 1998 until summer 1999. AM and PM differential slant column densities (DSCDs) at 90°SZA of BrO and OClO reached their maxima during polar vortex conditions in the winter months and were anti-correlated to temperature andNO2. Comparison of BrO with a 3-D chemical transport model showed good agreement for seasonal trends and non-vortex conditions. BrO AM/PM ratios were underestimated by the model for vortex conditions, indicating the need for better quantification of BrO source and sink reaction rates. The detection of OClO above 200 K at the 475 K isentropic level indicates the possible activation of chlorine on sulphate particles. Several episodes of boundary layer ozone depletion due to marine-derived BrO were evident in our zenith-skyspectra during April 1997 in Ny-Ålesund.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号