首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
测绘学   3篇
大气科学   3篇
地球物理   3篇
地质学   8篇
海洋学   4篇
天文学   1篇
自然地理   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2014年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2009年   2篇
  2007年   2篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  2000年   2篇
  1998年   1篇
排序方式: 共有23条查询结果,搜索用时 609 毫秒
1.
Simultaneous acquisition of water samples, radiance and irradiance measurements were carried out from 40 stations in the Mandovi–Zuari estuaries during February to May 2002. From the samples collected, inherent and apparent optical properties (IOP and AOP) such as absorption coefficient (a), upwelling diffuse attenuation coefficient (ku) and subsurface reflectance (R) were derived. Using these optical properties, radiative transfer at each water column is examined. On the basis of the radiative transfer outcome, band-ratio algorithms are derived for three optically active substances (OAS), viz, chlorophyll-a, suspended sediment and coloured dissolved organic matter (CDOM). The respective algorithms are 670/555, 490/670 and 412/670 nm for chlorophyll-a, suspended sediment and CDOM. These algorithms are applied to Ocean Colour Monitor (OCM), onboard Indian Remote Sensing Satellite (IRS)-Polar Satellite Launch Vehicle (P4), scenes (digital data), to synoptically analyze these OAS. The synoptic analysis of OAS revealed different hydrodynamic characteristics of the estuaries during non-monsoon seasons.  相似文献   
2.
Aerosols can affect the cloud-radiation feedback and the precipitation over the Indian monsoon region. In this paper, we propose that another pathway by which aerosols can modulate the multi-scale aspect of Indian monsoons is by altering the land–atmosphere interactions. The nonlinear feedbacks due to aerosol/diffuse radiation on coupled interactions over the Indian monsoon region are studied by: (1) reviewing recent field measurements and modeling studies, (2) analyzing the MODIS and AERONET aerosol optical depth datasets, and (3) diagnosing the results from sensitivity experiments using a mesoscale modeling system. The results of this study suggest that the large magnitude of aerosol loading and its impact on land–atmosphere interactions can significantly influence the mesoscale monsoonal characteristics in the Indo-Ganges Basin.  相似文献   
3.
We present the results of a search for the ground-state hyperfine transition of the OH radical near 53 MHz using the National Mesosphere–Stratosphere–Troposphere (MST) Radar Facility at Gadanki, India. The observed position was G48.4−1.4 near the Galactic plane. The OH line is not detected. We place a 3σ upper limit for the line flux density at 39 Jy from our observations. We also did not detect recombination lines (RLs) of carbon, which were within the frequency range of our observations. The 3σ upper limit of 20 Jy obtained for the flux density of carbon RLs, along with observations at 34.5 and 327 MHz, are used to constrain the physical properties of the line-forming region. Our upper limit is consistent with the line emission expected from a partially ionized region with electron temperature, density and path lengths in the range 20–300 K, 0.03–0.3 cm−3 and 0.1–170 pc, respectively.  相似文献   
4.
Meteorological drought during the southwest monsoon season and for the northeast monsoon season over five meteorological subdivisions of India for the period 1901–2015 has been examined using district and all India standardized precipitation index (SPI). Whenever all India southwest monsoon rainfall was less than ?10% or below normal, for those years all India SPI was found as ?1 or less. Composite analysis of SPI for the below normal years, viz., less than ?15% and ?20% of normal rainfall years indicate that during those years more than 30% of country’s area was under drought condition, whenever all India southwest monsoon rainfall was –15% or less than normal. Trend analysis of monthly SPI for the monsoon months identified the districts experiencing significant increase in drought occurrences. Significant positive correlation has been found with the meteorological drought over most of the districts of central, northern and peninsular India, while negative correlation was seen over the districts of eastern India with NINO 3.4 SST. For the first time, meteorological drought analysis over districts and its association with equatorial pacific SST and probability analysis has been done for the northeast monsoon over the affected regions of south peninsular India. Temporal correlation of all India southwest monsoon SPI and south peninsular India northeast monsoon SPI has been done with the global SST to identify the teleconnection of drought in India with global parameters.  相似文献   
5.
Aerosol effects on warm (liquid-phase) cumulus cloud systems may have a strong radiative influence via suppression of precipitation in convective systems. A consequence of this suppression of precipitation is increased liquid water available for large-scale stratiform clouds, through detrainment, that in turn affect their precipitation efficiency. The nature of this influence on radiation, however, is dependent on both the treatment of convective condensate and the aerosol distribution. Here, we examine these issues with two climate models—CSIRO and GISS, which treat detrained condensate differently. Aerosol–cloud interactions in warm stratiform and cumulus clouds (via cloud droplet formation and autoconversion) are treated similarly in both models. The influence of aerosol–cumulus cloud interactions on precipitation and radiation are examined via simulations with present-day and pre-industrial aerosol emissions. Sensitivity tests are also conducted to examine changes to climate due to changes in cumulus cloud droplet number (N c); the main connection between aerosols and cumulus cloud microphysics. Results indicate that the CSIRO GCM is quite sensitive to changes in aerosol concentrations such that an increase in aerosols increases N c, cloud cover, total liquid water path (LWP) and reduces total precipitation and net cloud radiative forcings. On the other hand, the radiative fluxes in the GISS GCM appear to have minimal changes despite an increase in aerosols and N c. These differences between the two models—reduced total LWP in the GISS GCM for increased aerosols, opposite to that seen in CSIRO—appear to be more sensitive to the detrainment of convective condensate, rather than to changes in N c. If aerosols suppress convective precipitation as noted in some observationally based studies (but not currently treated in most climate models), the consequence of this change in LWP suggests that: (1) the aerosol indirect effect (calculated as changes to net cloud radiative forcing from anthropogenic aerosols) may be higher than previously calculated or (2) lower than previously calculated. Observational constrains on these results are difficult to obtain and hence, until realistic cumulus-scale updrafts are implemented in models, the logic of detraining non-precipitating condensate at appropriate levels based on updrafts and its effects on radiation, will remain an uncertainty.  相似文献   
6.
Wave data collected off Goa along the west coast of India during February 1996-May 1997 has been subjected to spectral analysis, and swell and wind sea parameters have been estimated by separation frequency method. Dominance of swells and wind seas on monthly and seasonal basis has been estimated, and the analysis shows that swells dominate Goa coastal region not only during southwest monsoon (93%), but also during the post-monsoon (67%) season. Wind seas are dominant during the pre-monsoon season (51%). The mean wave periods (Tm) during southwest monsoon are generally above 5 s, whereas Tm is below 5 s during other seasons. Co-existence of multiple peaks (from NW and NE) was observed in the locally generated part of the wave spectrum, especially during the post-monsoon season. NCEP reanalysis winds have been used to analyse active fetch available in the Indian Ocean, from where the predominant swells propagate to the west coast of India. A numerical model was set up to simulate waves in the Indian Ocean using flexible mesh bathymetry. The correlation coefficients between measured and modelled significant wave heights and mean wave periods are 0.96 and 0.85, respectively. Numerical simulations reproduced the swell characteristics in the Indian Ocean, and from the model results potential swell generation areas are identified. The characteristics of swells associated with tropical storms that prevail off Goa during 1996 have also been analysed.  相似文献   
7.
Probabilistic seismic hazard analysis (PSHA) is carried out for the archaeological site of Vijayapura in south India in order to obtain hazard consistent seismic input ground-motions for seismic risk assessment and design of seismic protection measures for monuments, where warranted. For this purpose the standard Cornell-McGuire approach, based on seismogenic zones with uniformly distributed seismicity is employed. The main features of this study are the usage of an updated and unified seismic catalogue based on moment magnitude, new seismogenic source models and recent ground motion prediction equations (GMPEs) in logic tree framework. Seismic hazard at the site is evaluated for level and rock site condition with 10% and 2% probabilities of exceedance in 50 years, and the corresponding peak ground accelerations (PGAs) are 0.074 and 0.142 g, respectively. In addition, the uniform hazard spectra (UHS) of the site are compared to the Indian code-defined spectrum. Comparisons are also made with results from National Disaster Management Authority (NDMA 2010), in terms of PGA and pseudo spectral accelerations (PSAs) at T = 0.2, 0.5, 1.0 and 1.25 s for 475- and 2475-yr return periods. Results of the present study are in good agreement with the PGA calculated from isoseismal map of the Killari earthquake, \({\hbox {M}}_{\mathrm{w}} = 6.4\) (1993). Disaggregation of PSHA results for the PGA and spectral acceleration (\({\hbox {S}}_{\mathrm{a}}\)) at 0.5 s, displays the controlling scenario earthquake for the study region as low to moderate magnitude with the source being at a short distance from the study site. Deterministic seismic hazard (DSHA) is also carried out by taking into account three scenario earthquakes. The UHS corresponding to 475-yr return period (RP) is used to define the target spectrum and accordingly, the spectrum-compatible natural accelerograms are selected from the suite of recorded accelerograms.  相似文献   
8.
Glass fi ber reinforced gypsum(GFRG) wall panels are prefabricated panels with hollow cores, originally developed in Australia and subsequently adopted by India and China for use in buildings. This paper discusses identifi cation and calibration of a suitable hysteretic model for GFRG wall panels fi lled with reinforced concrete. As considerable pinching was observed in the experimental results, a suitable hysteretic model with pinched hysteretic rule is used to conduct a series of quasi-static as inelastic hysteretic response analyses of GFRG panels with two different widths. The calibration of the pinching model parameters was carried out to approximately match the simulated and experimental responses up to 80% of the peak load in the post peak region. Interestingly, the same values of various parameters(energy dissipation and pinching related parameters) were obtained for all fi ve test specimens.  相似文献   
9.
The spatial and temporal distribution of absorption of chromophoric dissolved organic matter at 440 nm (aCDOM (440)) in the Mandovi and Zuari estuaries situated along the west coast of India, has been analysed. The study was carried out using remotely sensed data, obtained from the Ocean Colour Monitor (OCM) on board the Indian Remote Sensing satellite — P4, together with in situ data during the period January to December 2005. Satellite retrieval of CDOM absorption was carried out by applying an algorithm developed for the site. A good correlation (R=0.98) was obtained between satellite derived CDOM and in situ data. Time series analysis revealed that spatial distribution of CDOM has a direct link with the seasonal hydrodynamics of the estuaries. The effect of remnant fresh water on CDOM distribution could be analysed by delineating a plume in the offshore region of the Zuari estuary. Though fresh water flux from terrestrial input plays a major role in the distribution of CDOM throughout the Mandovi estuary, its role in the Zuari estuary is significant up to the middle zone. Other processes responsible for feeding CDOM in both the estuaries are coastal advection, in situ production and resuspension of bottom settled sediments. The highest value of aCDOM(440) was observed in the middle zone of the Mandovi estuary during the post-monsoon season. The relation between aCDOM(440) and S (spectral slope coefficient of CDOM) could differentiate CDOM introduced in to estuaries through multiple sources. The algorithm developed for the Mandovi estuary is S=0.003 [aCDOM(440)−0.7091] while for the Zuari estuary, S=0.0031 [aCDOM(440)−0.777], respectively.  相似文献   
10.
Global cooling: increasing world-wide urban albedos to offset CO2   总被引:2,自引:0,他引:2  
Increasing urban albedo can reduce summertime temperatures, resulting in better air quality and savings from reduced air-conditioning costs. In addition, increasing urban albedo can result in less absorption of incoming solar radiation by the surface-troposphere system, countering to some extent the global scale effects of increasing greenhouse gas concentrations. Pavements and roofs typically constitute over 60% of urban surfaces (roof 20–25%, pavements about 40%). Using reflective materials, both roof and pavement albedos can be increased by about 0.25 and 0.15, respectively, resulting in a net albedo increase for urban areas of about 0.1. On a global basis, we estimate that increasing the world-wide albedos of urban roofs and paved surfaces will induce a negative radiative forcing on the earth equivalent to offsetting about 44 Gt of CO2 emissions. At ~$25/tonne of CO2, a 44 Gt CO2 emission offset from changing the albedo of roofs and paved surfaces is worth about $1,100 billion. Furthermore, many studies have demonstrated reductions of more than 20% in cooling costs for buildings whose rooftop albedo has been increased from 10–20% to about 60% (in the US, potential savings exceed $1 billion per year). Our estimated CO2 offsets from albedo modifications are dependent on assumptions used in this study, but nevertheless demonstrate remarkable global cooling potentials that may be obtained from cooler roofs and pavements.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号