首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
大气科学   3篇
  2000年   1篇
  1999年   2篇
排序方式: 共有3条查询结果,搜索用时 62 毫秒
1
1.
The microstructure of orographic clouds related to the aerosol present was studied during the second Aerosol Characterisation Experiment (ACE‐2). Very high cloud droplet number concentrations (almost 3000 cm−3) were observed. These high concentrations occurred when clouds formed on a hill slope at Tenerife in polluted air masses originating in Europe that had transported the order of 1000 km over the Atlantic Ocean. The validity of the measured droplet number concentrations was investigated by comparing with measurements of the aerosol upstream of the cloud and cloud interstitial aerosol. Guided by distributions of the ratios between the measurements, three criteria of typically 30% in maximum deviation were applied to the measurements to test their validity. Agreement was found for 88% of the cases. The validated data set spans droplet number concentrations of 150–3000 cm−3. The updraught velocity during the cloud formation was estimated to 2.2 m s−1 by model calculations, which is typical of cumuliform clouds. The results of the present study are discussed in relation to cloud droplet number concentrations previously reported in the literature. The importance of promoting the mechanistic understanding of the aerosol/cloud interaction and the use of validation procedures of cloud microphysical parameters is stressed in relation to the assessment of the indirect climatic effect of aerosols.  相似文献   
2.
A closure study of sub-micrometer aerosol particle hygroscopic behaviour   总被引:2,自引:0,他引:2  
The hygroscopic properties of sub-micrometer aerosol particles were studied in connection with a ground-based cloud experiment at Great Dun Fell, in northern England in 1995. Hygroscopic diameter growth factors were measured with a Tandem Differential Mobility Analyser (TDMA) for dry particle diameters between 35 and 265 nm at one of the sites upwind of the orographic cloud. An external mixture consisting of three groups of particles, each with different hygroscopic properties, was observed. These particle groups were denoted less-hygroscopic, more-hygroscopic and sea spray particles and had average diameter growth factors of 1.11–1.15, 1.38–1.69 and 2.08–2.21 respectively when taken from a dry state to a relative humidity of 90%. Average growth factors increased with dry particle size. A bimodal hygroscopic behaviour was observed for 74–87% of the cases depending on particle size. Parallel measurements of dry sub-micrometer particle number size distributions were performed with a Differential Mobility Particle Sizer (DMPS). The inorganic ion aerosol composition was determined by means of ion chromatography analysis of samples collected with Berner-type low pressure cascade impactors at ambient conditions. The number of ions collected on each impactor stage was predicted from the size distribution and hygroscopic growth data by means of a model of hygroscopic behaviour assuming that only the inorganic substances interacted with the ambient water vapour. The predicted ion number concentration was compared with the actual number of all positive and negative ions collected on the various impactor stages. For the impactor stage which collected particles with aerodynamic diameters between 0.17–0.53 μm at ambient relative humidity, and for which all pertinent data was available for the hygroscopic closure study, the predicted ion concentrations agreed with the measured values within the combined measurement and model uncertainties for all cases but one. For this impactor sampling occasion, the predicted ion concentration was significantly higher than the measured. The air mass in which this sample was taken had undergone extensive photochemical activity which had probably produced hygroscopically active material other than inorganic ions, such as organic oxygenated substances.  相似文献   
3.
During March and April of 1995 a major international field project was conducted at the UMIST field station site on Great Dun Fell in Cumbria, Northern England. The hill cap cloud which frequently envelopes this site was used as a natural flow through reactor to examine the sensitivity of the cloud microphysics to the aerosol entering the cloud and also to investigate the effects of the cloud in changing the aerosol size distribution, chemical composition and associated optical properties. To investigate these processes, detailed measurements of the cloud water chemistry (including the chemistry of sulphur compounds, organic and inorganic oxidised nitrogen and ammonia), cloud microphysics and properties of the aerosol and trace gas concentrations upwind and downwind of the cap cloud were undertaken. It was found that the cloud droplet number was generally strongly correlated to aerosol number concentration, with up to 2000 activated droplets cm−3 being observed in the most polluted conditions. In such conditions it was inferred that hygroscopic organic compounds were important in the activation process. Often, the size distribution of the aerosol was substantially modified by the cloud processing, largely due to the aqueous phase oxidation of S(IV) to sulphate by hydrogen peroxide, but also through the uptake and fixing of gas phase nitric acid as nitrate, increasing the calculated optical scattering of the aerosol substantially (by up to 24%). New particle formation was also observed in the ultrafine aerosol mode (at about 5 nm) downwind of the cap cloud, particularly in conditions of low total aerosol surface area and in the presence of ammonia and HCl gases. This was seen to occur at night as well as during the day via a mechanism which is not yet understood. The implications of these results for parameterising aerosol growth in Global Climate Models are explored.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号