首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
大气科学   1篇
地质学   2篇
  2010年   1篇
  2007年   1篇
  1990年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
2.
Nappe structure of the Sambagawa belt   总被引:1,自引:0,他引:1  
The thermal structure of the Sambagawa belt, which is reflected by minerals produced during the highest temperature of metamorphism, generally is characterized by the occurrence of the highest grade schists in the middle of the structural pile. The origin of this structure has been analysed in the upper horizon of the Sambagawa schist sequence in Central Shikoku as an example for the structure of the whole belt. The upper horizon of the Sambagawa schist sequence in Central Shikoku consists of three nappes, the Saruta nappe II, the Saruta nappe I and the Fuyunose nappe in descending order of structural level. The Saruta nappe II shows a downward increase of metamorphic grade from the garnet zone, through the albite-biotite zone, to the oligoclase-biotite zone. The Saruta nappe I consists mainly of rocks in the albite-biotite zone and partly in the oligoclase-biotite zone, but the direction of the increase of metamorphic grade is not clear. The Fuyunose nappe shows an upward increase in metamorphic grade which changes from the glaucophane zone to the barroisite zone. It is concluded that the Saruta nappe II and Saruta nappe I were overturned and then mechanically coupled with the Fuyunose nappe. The Sambagawa metamorphic field, which is of the highest temperature phase of metamorphism, appears to have had an inverted thermal gradient and a thermal structure comparable with that expected in the deeper parts of a subduction complex.  相似文献   
3.
T he first finding of low‐temperature eclogites from the Indochina region is reported. The eclogites occur along the Song Ma Suture zone in northern Vietnam, which is widely regarded as the boundary between the South China and Indochina cratons. The major lithology of the area is pelitic schist that contains garnet and phengite with or without biotite, chloritoid, staurolite and kyanite, and which encloses blocks and lenses of eclogite and amphibolite. The eclogites commonly consist of garnet, omphacite, phengite, rutile, quartz and/or epidote with secondary barroisite. Omphacite is commonly surrounded by a symplectite of Na‐poor omphacite and Na‐rich plagioclase. In highly retrograded domains, diopside + tremolite + plagioclase symplectites replace the primary phases. Estimated peak‐pressure metamorphic conditions based on isochemical phase diagrams for the eclogites are 2.1–2.2 GPa and 600–620 °C, even though thermobarometric results yield higher pressure and temperature conditions (2.6–2.8 GPa and 620–680 °C). The eclogites underwent a clockwise P–T trajectory with a post‐peak‐pressure increase of temperature to a maximum of >750 °C at 1.7 GPa and a subsequent cooling during decompression to 650 °C and 1.3 GPa, which was followed by additional cooling before close‐to‐isothermal decompression to ∼530 °C at 0.5 GPa. The surrounding pelitic schist (garnet–chloritoid–phengite) records similar metamorphic conditions (580–600 °C at 1.9–2.3 GPa) and a monazite chemical age of 243 ± 4 Ma. A few monazite inclusions within garnet and the cores of some zoned monazite in garnet–phengite schist record an older thermal event (424 ± 15 Ma). The present results indicate that the Indochina craton was deeply (>70 km) subducted beneath the South China craton in the Triassic. The Silurian cores of monazite grains may relate to an older non‐collisional event in the Indochina craton.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号