首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
  国内免费   1篇
大气科学   8篇
  2015年   2篇
  2014年   2篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
排序方式: 共有8条查询结果,搜索用时 187 毫秒
1
1.
Based upon the climate feedback-responses analysis method, a quantitative attribution analysis is conducted for the annual-mean surface temperature biases in the Community Earth System Model version 1 (CESM1). Surface temperature biases are decomposed into partial temperature biases associated with model biases in albedo, water vapor, cloud, sensible/latent heat flux, surface dynamics, and atmospheric dynamics. A globally-averaged cold bias of ?1.22 K in CESM1 is largely attributable to albedo bias that accounts for approximately ?0.80 K. Over land, albedo bias contributes ?1.20 K to the averaged cold bias of ?1.45 K. The cold bias over ocean, on the other hand, results from multiple factors including albedo, cloud, oceanic dynamics, and atmospheric dynamics. Bias in the model representation of oceanic dynamics is the primary cause of cold (warm) biases in the Northern (Southern) Hemisphere oceans while surface latent heat flux over oceans always acts to compensate for the overall temperature biases. Albedo bias resulted from the model’s simulation of snow cover and sea ice is the main contributor to temperature biases over high-latitude lands and the Arctic and Antarctic region. Longwave effect of water vapor is responsible for an overall warm (cold) bias in the subtropics (tropics) due to an overestimate (underestimate) of specific humidity in the region. Cloud forcing of temperature biases exhibits large regional variations and the model bias in the simulated ocean mixed layer depth is a key contributor to the partial sea surface temperature biases associated with oceanic dynamics. On a global scale, biases in the model representation of radiative processes account more for surface temperature biases compared to non-radiative, dynamical processes.  相似文献   
2.
This study examines the potential impact of vegetation feedback on the changes in the diurnal temperature range (DTR) due to the doubling of atmospheric CO2 concentrations during summer over the Northern Hemisphere using a global climate model equipped with a dynamic vegetation model. Results show that CO2 doubling induces significant increases in the daily mean temperature and decreases in DTR regardless of the presence of the vegetation feedback effect. In the presence of vegetation feedback, increase in vegetation productivity related to warm and humid climate lead to (1) an increase in vegetation greenness in the mid-latitude and (2) a greening and the expansion of grasslands and boreal forests into the tundra region in the high latitudes. The greening via vegetation feedback induces contrasting effects on the temperature fields between the mid- and high-latitude regions. In the mid-latitudes, the greening further limits the increase in T max more than T min, resulting in further decreases in DTR because the greening amplifies evapotranspiration and thus cools daytime temperature. The greening in high-latitudes, however, it reinforces the warming by increasing T max more than T min to result in a further increase in DTR from the values obtained without vegetation feedback. This effect on T max and DTR in the high latitude is mainly attributed to the reduction in surface albedo and the subsequent increase in the absorbed insolation. Present study indicates that vegetation feedback can alter the response of the temperature field to increases in CO2 mainly by affecting the T max and that its effect varies with the regional climate characteristics as a function of latitudes.  相似文献   
3.
Park  Tae-Won  Jeong  Jee-Hoon  Deng  Yi  Zhou  Renjun  Cai  Ming 《Climate Dynamics》2015,45(5-6):1207-1217
Climate Dynamics - In this study, we carried out an attribution analysis that quantitatively assessed relative contributions to the observed temperature anomalies associated with strong and weak...  相似文献   
4.
Through an agglomerative hierarchical clustering method, cold surges over East Asia are classified into two distinct types based on the spatial pattern of the geopotential height anomalies at 300 hPa. One is the wave-train type that is associated with developing large-scale waves across the Eurasian continent. The other is the blocking type whose occurrence accompanies subarctic blocking. During the wave-train cold surge, growing baroclinic waves induce a southeastward expansion of the Siberian High and strong northerly winds over East Asia. Blocking cold surge, on the other hand, is associated with a southward expansion of the Siberian High and northeasterly winds inherent to a height dipole consisting of the subarctic blocking and the East Asian coastal trough. The blocking cold surge tends to be more intense and last longer compared to the wave-train type. The wave-train cold surge is associated with the formation of a negative upper tropospheric height anomaly southeast of Greenland approximately 12 days before the surge occurrence. Further analysis of isentropic potential vorticity reveals that this height anomaly could originate from the lower stratosphere over the North Atlantic. Cold surge of the blocking type occurs with an amplifying positive geopotential and a negative potential vorticity anomaly over the Arctic and the northern Eurasia in stratosphere. These anomalies resemble the stratospheric signature of a negative phase of the Arctic Oscillation. This stratospheric feature is further demonstrated by the observation that the blocking type cold surge occurs more often when the Arctic Oscillation is in its negative phase.  相似文献   
5.
A series of coupled atmosphere-ocean-land global climate model (GCM) simulations using the National Center for Atmospheric Research (NCAR) Community Climate System Model 3 (CCSM3) has been performed for the period 1870–2099 at a T85 horizontal resolution following the GCM experimental design suggested in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). First, a hindcast was performed using the atmospheric concentrations of three greenhouse gases (CO2, CH4, N2O) specified annually and globally on the basis of observations for the period 1870–1999. The hindcast results were compared with observations to evaluate the GCM’s reliability in future climate simulations. Second, climate projections for a 100-year period (2000–2099) were made using six scenarios of the atmospheric concentrations of the three greenhouse gases according to the A1FI, A1T, A1B, A2, B1, and B2 emission profiles of the Special Report on Emissions Scenarios. The present CCSM simulations are found to be consistent with IPCC’s AR4 results in the temporal and spatial distributions for both the present-day and future periods. The GCM results were used to examine the changes in extreme temperatures and precipitation in East Asia and Korea. The extreme temperatures were categorized into warm and cold events: the former includes tropical nights, warm days, and heat waves during summer (June–July–August) and the latter includes frost days, cold days, and cold surges during winter (December–January–February). Focusing on Korea, the results predict more frequent heat waves in response to future emissions: the projected percentage changes between the present day and the late 2090s range from 294% to 583% depending on the emission scenario. The projected global warming is predicted to decrease the frequency of cold extreme events; however, the projected changes in cold surge frequency are not statistically significant. Whereas the number of cold surges in the A1FI emission profile decreases from the present-day value by up to 24%, the decrease in the B1 scenario is less than 1%. The frequency and intensity of extreme precipitation events year-round were examined. Both the frequency and the intensity of these events are predicted to increase in the region around Korea. The present results will be helpful for establishing an adaptation strategy for possible climate change nationwide, especially extreme climate events, associated with global warming.  相似文献   
6.
The characteristics of the upper-level circulation and thermodynamical properties for the period when two distinct cold surges broke out over East Asia during the 2005/06 winter are investigated. From early December 2005 to early January 2006, exceptionally cold weather lasted for approximately one month due to two successive cold surges that took place on 2 December 2005 and 2 January 2006, respectively. This study reveals that both involve the upper-tropospheric circulation, which induces the amplification and expansion of the surface Siberian high toward East Asia, but arose from different causes: the former is caused by the upper-level blocking originated from the North Pacific and the latter is caused by the upper-level wave train across the Eurasian Continent. In particular, it is suggested that the lower-tropospheric anomalous wind caused by upper-level circulation anomalies and a steep meridional temperature gradient amplified by phase-locked annual cycle combined to induce very strong cold advection in East Asia, which resulted in exceptionally cold weather that lasted for several weeks. The present results emphasize that the characteristics of the upper-tropospheric circulation can be considered as important precursors to cold surge occurrences in East Asia.  相似文献   
7.
Inclusion of the effects of vegetation feedback in a global climate change simulation suggests that the vegetation–climate feedback works to alleviate partially the summer surface warming and the associated heat waves over Europe induced by the increase in atmospheric CO2 concentrations. The projected warming of 4°C over most of Europe with static vegetation has been reduced by 1°C as the dynamic vegetation feedback effects are included.. Examination of the simulated surface energy fluxes suggests that additional greening in the presence of vegetation feedback effects enhances evapotranspiration and precipitation, thereby limiting the warming, particularly in the daily maximum temperature. The greening also tends to reduce the frequency and duration of heat waves. Results in this study strongly suggest that the inclusion of vegetation feedback within climate models is a crucial factor for improving the projection of warm season temperatures and heat waves over Europe.  相似文献   
8.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号