首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
大气科学   1篇
地球物理   1篇
  2014年   1篇
  2003年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
This study presents an analysis of the relationship between winter large-scale circulation and surface meteorological conditions over Greece for the period 1979–2009. The adopted methodology involves the application of an automated atmospheric circulation classification scheme based on the self-organizing map approach. The impact of each of the identified relevant 19 winter atmospheric circulation patterns on local meteorological condition is examined at seven sites by calculating the corresponding differences from the mean meteorological conditions. The conditional transition probabilities of circulation patterns indicate the existence of increased 1-day persistence, especially for the anticyclonic and the pattern related to Genoa depressions. Positive temperature anomalies are observed for the cyclonic patterns, while negative anomalies are attributed to the effect of anticyclonic circulation.  相似文献   
2.
Empirical attenuation relationship for Arias Intensity   总被引:1,自引:0,他引:1  
Arias Intensity is a ground motion parameter that captures the potential destructiveness of an earthquake as the integral of the square of the acceleration–time history. It correlates well with several commonly used demand measures of structural performance, liquefaction, and seismic slope stability. A new empirical relationship is developed to estimate Arias Intensity as a function of magnitude, distance, fault mechanism, and site category based on 1208 recorded ground motion data from 75 earthquakes in active plate‐margins. Its functional form is derived from the point‐source model, and the coefficients are determined through non‐linear regression analyses using a random‐effects model. The results show that for large magnitude earthquakes (M > 7) Arias Intensity was significantly overestimated by previous relationships while it was underestimated for smaller magnitude events (M ? 6). The average horizontal Arias Intensity is not significantly affected by forward rupture directivity in the near‐fault region. The aleatory variability associated with Arias Intensity is larger than that of most other ground motion parameters such as spectral acceleration. However, it may be useful in assessing the potential seismic performance of stiff engineering systems whose response is dominated by the short‐period characteristics of ground motions. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号