首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
大气科学   7篇
地球物理   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  1998年   1篇
排序方式: 共有8条查询结果,搜索用时 62 毫秒
1
1.
A new mean-field theory of turbulent convection is developed based on the idea that only the small-scale region of the spectrum is considered as turbulence, whereas its large-scale part, including both regular and semi-organized motions, is treated as the mean flow. In the shear-free regime, this theory predicts the convective wind instability, which causes the formation of large-scale semi-organized motions in the form of cells. In the presence of wind shear, the theory predicts another type of instability, which causes the formation of large-scale semi-organized structures in the form of rolls and the generation of convective-shear waves propagating perpendicular to the convective rolls. The spatial characteristics of these structures, such as the minimum size of the growing perturbations and the size of perturbations with the maximum growth rate, are determined. This theory might be useful for understanding the origin of large-scale cells and rolls observed in the convective boundary layer and laboratory turbulent convection  相似文献   
2.
3.
We suggest a one-dimensional model of precipitation scavenging of soluble gaseous pollutants by non-evaporating and evaporating droplets that is valid for arbitrary initial vertical distribution of soluble trace gases in the atmosphere. It is shown that for low gradients of soluble trace gases in the atmosphere, scavenging of gaseous pollutants is governed by a linear wave equation that describes propagation of a wave in one direction. The derived equation is solved by the method of characteristics. Scavenging coefficient and the rates of precipitation scavenging are calculated for wet removal of sulfur dioxide (SO2) and ammonia (NH3) using measured initial distributions of trace gases. It is shown that scavenging coefficient for arbitrary initial vertical distribution of soluble trace gases in the atmosphere is non-stationary and height-dependent. In case of exponential initial distribution of soluble trace gases in the atmosphere, scavenging coefficient for non-evaporating droplets in the region between the ground and the position of a scavenging front is a product of rainfall rate, solubility parameter, and the growth constant in the formula for the initial profile of a soluble trace gas in the atmosphere. This expression yields the same estimate of scavenging coefficient for sulfur dioxide scavenging by rain as field estimates presented in McMahon and Denison (1979). It is demonstrated that the smaller the slope of the concentration profile the higher the value of a scavenging coefficient.  相似文献   
4.
We propose a new turbulence closure model based on the budget equations for the key second moments: turbulent kinetic and potential energies: TKE and TPE (comprising the turbulent total energy: TTE = TKE + TPE) and vertical turbulent fluxes of momentum and buoyancy (proportional to potential temperature). Besides the concept of TTE, we take into account the non-gradient correction to the traditional buoyancy flux formulation. The proposed model permits the existence of turbulence at any gradient Richardson number, Ri. Instead of the critical value of Richardson number separating—as is usually assumed—the turbulent and the laminar regimes, the suggested model reveals a transitional interval, , which separates two regimes of essentially different nature but both turbulent: strong turbulence at ; and weak turbulence, capable of transporting momentum but much less efficient in transporting heat, at . Predictions from this model are consistent with available data from atmospheric and laboratory experiments, direct numerical simulation and large-eddy simulation.  相似文献   
5.
We advance our prior energy- and flux-budget (EFB) turbulence closure model for stably stratified atmospheric flow and extend it to account for an additional vertical flux of momentum and additional productions of turbulent kinetic energy (TKE), turbulent potential energy (TPE) and turbulent flux of potential temperature due to large-scale internal gravity waves (IGW). For the stationary, homogeneous regime, the first version of the EFB model disregarding large-scale IGW yielded universal dependencies of the flux Richardson number, turbulent Prandtl number, energy ratios, and normalised vertical fluxes of momentum and heat on the gradient Richardson number, Ri. Due to the large-scale IGW, these dependencies lose their universality. The maximal value of the flux Richardson number (universal constant ≈0.2–0.25 in the no-IGW regime) becomes strongly variable. In the vertically homogeneous stratification, it increases with increasing wave energy and can even exceed 1. For heterogeneous stratification, when internal gravity waves propagate towards stronger stratification, the maximal flux Richardson number decreases with increasing wave energy, reaches zero and then becomes negative. In other words, the vertical flux of potential temperature becomes counter-gradient. Internal gravity waves also reduce the anisotropy of turbulence: in contrast to the mean wind shear, which generates only horizontal TKE, internal gravity waves generate both horizontal and vertical TKE. Internal gravity waves also increase the share of TPE in the turbulent total energy (TTE = TKE + TPE). A well-known effect of internal gravity waves is their direct contribution to the vertical transport of momentum. Depending on the direction (downward or upward), internal gravity waves either strengthen or weaken the total vertical flux of momentum. Predictions from the proposed model are consistent with available data from atmospheric and laboratory experiments, direct numerical simulations and large-eddy simulations.  相似文献   
6.
Here we advance the physical background of the energy- and flux-budget turbulence closures based on the budget equations for the turbulent kinetic and potential energies and turbulent fluxes of momentum and buoyancy, and a new relaxation equation for the turbulent dissipation time scale. The closure is designed for stratified geophysical flows from neutral to very stable and accounts for the Earth’s rotation. In accordance with modern experimental evidence, the closure implies the maintaining of turbulence by the velocity shear at any gradient Richardson number Ri, and distinguishes between the two principally different regimes: “strong turbulence” at ${Ri \ll 1}$ typical of boundary-layer flows and characterized by the practically constant turbulent Prandtl number Pr T; and “weak turbulence” at Ri > 1 typical of the free atmosphere or deep ocean, where Pr T asymptotically linearly increases with increasing Ri (which implies very strong suppression of the heat transfer compared to the momentum transfer). For use in different applications, the closure is formulated at different levels of complexity, from the local algebraic model relevant to the steady-state regime of turbulence to a hierarchy of non-local closures including simpler down-gradient models, presented in terms of the eddy viscosity and eddy conductivity, and a general non-gradient model based on prognostic equations for all the basic parameters of turbulence including turbulent fluxes.  相似文献   
7.
A turbulent magnetic dynamo can be considered as the evolution of a vector field in a turbulent fluid flow. The problem of evolution of scalar fields (e.g., number density of small particles) in a turbulent fluid flow is similar to the turbulent magnetic dynamo. The dynamo instability results in generation of magnetic field. The most important effect which can cause a generation of mean magnetic field in a turbulent fluid flow is the -effect: = – (1/3) u · ( × u), where u is the turbulent velocity field with the correlation time . A similar instability in the passive scalar problem results in formation of large-scale inhomogeneous structures in a spatial distribution of particles due to the -effect: = up ( · up), where u p is the random velocity field of the particles which they acquire in a turbulent fluid velocity field. The effect is caused by inertia of particles which results in divergent velocity field of the particles. This results in additional turbulent nondiffusive flux of particles. The mean-field dynamics of inertial particles are studied by considering the stability of the equilibrium solution of the derived evolution equation for the mean number density of the particles in the limit of large Péclet numbers. The resulting equation is reduced to an eigenvalue problem for a Schrödinger equation with a variable mass, and a modified Rayleigh-Ritz variational method is used to estimate the lowest eigenvalue (corresponding to the growth rate of the instability). This estimate is in good agreement with obtained numerical solution of the Schrödinger equation. Similar effects arise during turbulent transport of gaseous admixtures (or light noninertial particles) in a low-Mach-number compressible fluid flow. The discussed effects are important in planetary and atmospheric physics (cloud formation, pollutant dynamics, preferential concentration of particles in protoplanetary disks and also planetesimals in them).  相似文献   
8.
We suggest a non-isothermal one-dimensional model of precipitation scavenging of highly soluble gaseous pollutants in inhomogeneous atmosphere. When gradients of soluble trace gases’ concentrations and temperature in the atmosphere are small, scavenging of gaseous pollutants is governed by two linear wave equations that describe propagation of a scavenging and temperature waves in one direction. If wash-down front velocity is much larger than the velocity of the temperature front, scavenging is determined by propagating scavenging front in the atmosphere with inhomogeneous temperature distribution. We solved the derived equation by the method of characteristics and determined scavenging coefficient and the rates of precipitation scavenging for wet removal of sulfur dioxide using measured initial distributions of trace gases and temperature in the atmosphere. It is shown that in the case of exponential initial distribution of soluble trace gases and linear temperature distribution in the atmosphere, scavenging coefficient in the region between the ground and the position of a scavenging front is proportional to rainfall rate, solubility parameter in the under-cloud region, adjacent to a bottom of a cloud and to the growth constant in the formula for the initial profile of a soluble trace gas in the atmosphere. The derived formula yields the same value of scavenging coefficient for sulfur dioxide scavenging by rain as field estimates presented by McMahon and Denison (Atmos Environ 13:571–585, 1979). It is demonstrated that in the case when the altitude variation of temperature in the atmosphere is determined by the environmental lapse rate, scavenging coefficient increases with height in the region between the scavenging front and the ground. In the case when altitude temperature variation in the atmosphere is determined by temperature inversion, scavenging coefficient decreases with height in a region between the scavenging front and the ground. Theoretical predictions of the value of the scavenging coefficient for sulfur dioxide washout by rain and of the dependence of the magnitude of the scavenging coefficient on rain intensity are in good agreements with the atmospheric measurements of Martin (Atmos Environ 18:1955–1961, 1984).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号