首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   4篇
  2013年   4篇
排序方式: 共有4条查询结果,搜索用时 10 毫秒
1
1.
Abstract

To investigate the consequences of climate change on the water budget in small catchments, it is necessary to know the change of local precipitation and temperature. General Circulation Models (GCM) cannot provide regional climate parameters yet, because of their coarse resolution and imprecise modelling of precipitation. Therefore downscaling of precipitation and temperature has to be carried out from the GCM grids to a small scale of a few square kilometres. Daily rainfall and temperature are modelled as processes conditioned on atmospheric circulation. Rainfall is linked to the circulation patterns (CPs) using conditional probabilities and conditional rainfall amount distribution. Both temperature and precipitation are downscaled to several locations simultaneously taking into account the CP dependent spatial correlation. Temperature is modelled using a simple autoregressive approach, conditioned on atmospheric circulation and local areal precipitation. The model uses the classification scheme of the German Weather Service and a fuzzy rule-based classification. It was applied in the Aller catchment for validation using observed rainfall and temperature, and observed classified geopotential pressure heights. GCM scenarios of the ECHAM model were used to make climate change predictions (using classified GCM geopotential heights); simulated values agree fairly well with historical data. Results for different GCM scenarios are shown.  相似文献   
2.
Abstract

Detection of nonstationarity in series of flow records is of vast scientific and practical significance. In order to develop guidance as to the choice of an appropriate test, among the many candidates, one has recourse to analysis of a controlled trend artificially introduced to generated data mimicking river flow observations. Raw series of good quality flow data were normalized and de-seasonalized and subsequently transformed to the Fourier spectral domain. Keeping the power spectrum preserved, the phase spectrum was subjected to randomization. After transformation back to the temporal domain, the data were contaminated with trends and step changes in a controlled way. The results evaluate the detectability of nonstationarity by particular tests as a quasi-continuous function of magnitude of the contaminating change. A method is devised to compare the tests' performance, with the objective of choosing an appropriate tool. Analysis of detectability versus change magnitude gives a new insight, of direct practical applicability, into the properties of the tests. Further insight is provided by examining over 200 real series of river flow records.  相似文献   
3.
Abstract

A methodology has been developed and applied to an eastern Nebraska, USA, case study to estimate the space-time distribution of daily precipitation under climate change. The approach is based on the analysis both of the type and of the Markov properties of atmospheric circulation patterns (CPs), and a stochastic linkage between daily (here 500 hPa) CP types and daily precipitation events. Historical data and General Circulation Model (GCM) output of daily CPs corresponding to 1 × CO2 and 2 × CO2 are considered. Time series of both local and regional precipitation corresponding to each of those cases were simulated and their statistical properties were compared. Under the dry continental climate of eastern Nebraska, a highly variable spatial response to climate change was obtained. Most of the local and the regional average precipitation values reflect, under 2 × CO2, a somewhat wetter and a more variable precipitation regime in eastern Nebraska. The sensitivity of the results to the GCM utilized should be considered.  相似文献   
4.
Abstract

Rainfall-runoff models are used to describe the hydrological behaviour of a river catchment. Many different models exist to simulate the physical processes of the relationship between precipitation and runoff. Some of them are based on simple and easy-to-handle concepts, others on highly sophisticated physical and mathematical approaches that require extreme effort in data input and handling. Recently, mathematical methods using linguistic variables, rather than conventional numerical variables applied extensively in other disciplines, are encroaching in hydrological studies. Among these is the application of a fuzzy rule-based modelling. In this paper an attempt was made to develop fuzzy rule-based routines to simulate the different processes involved in the generation of runoff from precipitation. These routines were implemented within a conceptual, modular, and semi-distributed model-the HBV model. The investigation involved determining which modules of this model could be replaced by the new approach and the necessary input data were identified. A fuzzy rule-based routine was then developed for each of the modules selected, and application and validation of the model was done on a rainfall-runoff analysis of the Neckar River catchment, in southwest Germany.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号