首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   4篇
海洋学   1篇
  2013年   3篇
  2011年   1篇
  2007年   1篇
排序方式: 共有5条查询结果,搜索用时 109 毫秒
1
1.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   
2.
3.
4.
In order to determine the maintenance mechanisms of the currents of the global ocean, this study investigates the budget of the annual mean kinetic energy (KE) in a high-resolution (0.1° × 0.1°) semi-global ocean simulation. The analysis is based on a separation of the mean KE using the barotropic (i.e., depth-averaged) and baroclinic (the residual) components of velocity. The barotropic and baroclinic KEs dominate in higher and lower latitudes, respectively, with their global average being comparable to each other. The working rates of wind forcing on the barotropic and baroclinic circulations in the global ocean are 243 and 747 gigawatts, respectively. This study presents at least three new results for the budget of the barotropic KE. Firstly, an energy diagram is rederived to show that the work of the barotropic component of the horizontal pressure gradient (HPG) is connected to the work related to the joint effect of baroclinicity and bottom relief (JEBAR), and then to the budget of potential energy (PE). Secondly, the model analysis shows that the globally averaged work of the barotropic HPG (which is connected to the work related to JEBAR and then to the budget of the PE) is nearly zero. This indicates that the wind- and buoyancy-induced barotropic circulations in the global ocean are of the same strength with opposite sign. Thirdly, it is found that the work of the wind forcing on the barotropic component of the simulated Antarctic Circumpolar Current (ACC) is canceled by the combined effect, in equal measure, of the work of the barotropic HPG and the work of dissipative processes for mean KE. This result makes a significant contribution to the discussion on the depth-integrated momentum balance of the ACC. The barotropic KE is dissipated by the effects of bottom frictional stress, lateral frictional stress, and the Reynolds stress, of which more than half is attributed to an unexpectedly large contribution from biharmonic horizontal friction. Future studies should pay more attention to the role of biharmonic friction used in high-resolution numerical models.  相似文献   
5.
Abstract

We study the formation of lenses of the ocean's intermediate water using a 2.5-layerβ-plane primitive equation model with localized injection of water mass. For the injecting rate of 1.0 Sv, we have observed that strong vortices are shed regularly. These vortices propagate westward much faster than the second baroclinic long Rossby wave. They are totally isolated from each other and show strong baroclinicity as well. Moreover, they remain stable over a sufficiently long period of time. Regular formation of such strong vortices in the intermediate layer has not been reported previously. The translation speed is explained using the Euler's momentum integral theorem for the nonlinear baroclinic vortex on the β-plane. We have demonstrated that coupling between the primary motion in the intermediate layer and the secondary motion in the upper layer with a meridional shift is crucial to the fast westward translation of the intense vortices. A simple dispersion formula relating the zonal translation speed with the vortex radius is also derived under the assumption of quasi-geostrophy. It has turned out that the analytical relation explains the numerical results surprisingly well despite the limitation of its derivation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号