首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31065篇
  免费   762篇
  国内免费   478篇
测绘学   950篇
大气科学   2354篇
地球物理   6523篇
地质学   11392篇
海洋学   2527篇
天文学   6856篇
综合类   157篇
自然地理   1546篇
  2022年   196篇
  2021年   319篇
  2020年   363篇
  2019年   404篇
  2018年   890篇
  2017年   853篇
  2016年   1101篇
  2015年   634篇
  2014年   1090篇
  2013年   1730篇
  2012年   1100篇
  2011年   1296篇
  2010年   1213篇
  2009年   1533篇
  2008年   1339篇
  2007年   1319篇
  2006年   1273篇
  2005年   968篇
  2004年   937篇
  2003年   849篇
  2002年   810篇
  2001年   704篇
  2000年   716篇
  1999年   633篇
  1998年   652篇
  1997年   584篇
  1996年   470篇
  1995年   445篇
  1994年   466篇
  1993年   355篇
  1992年   339篇
  1991年   286篇
  1990年   340篇
  1989年   302篇
  1988年   272篇
  1987年   318篇
  1986年   262篇
  1985年   347篇
  1984年   379篇
  1983年   375篇
  1982年   348篇
  1981年   283篇
  1980年   301篇
  1979年   257篇
  1978年   248篇
  1977年   253篇
  1976年   206篇
  1975年   236篇
  1974年   216篇
  1973年   204篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
We present the results of our modeling of the O I line formation under non-LTE conditions in the atmospheres of FG stars. The statistical equilibrium of O I has been calculated using Barklem’s quantum-mechanical rates of inelastic collisions with hydrogen atoms. We have determined the non-LTE oxygen abundance from atomic O I lines for the Sun and 46 FG stars in a wide metallicity range, ?2.6 < [Fe/H] < 0.2. The application of accurate atomic data has led to an increase in the departures from LTE and a decrease in the oxygen abundance compared to the use of Drawin’s theoretical approximation. The change in the non-LTE abundance from the infrared O I 7771-5 Å triplet lines is 0.11 dex for solar atmospheric parameters and diminishes in absolute value with decreasing metallicity. We have revised the [O/Fe]–[Fe/H] relationship derived by us previously. The change in [O/Fe] is small in the [Fe/H] range from ?1.5 to 0.2. For stars with [Fe/H] < ?1 the [O/Fe] ratio has increased so that [O/Fe] = 0.60 at [Fe/H] = ?0.8 and rises to [O/Fe] = 0.75 at [Fe/H] = ?2.6.  相似文献   
2.
Our current understanding on sedimentary deep-water environments is mainly built of information obtained from tectonic settings such as passive margins and foreland basins. More observations from extensional settings are particularly needed in order to better constrain the role of active tectonics in controlling sediment pathways, depositional style and stratigraphic stacking patterns. This study focuses on the evolution of a Plio-Pleistocene deep-water sedimentary system (Rethi-Dendro Formation) and its relation to structural activity in the Amphithea fault block in the Corinth Rift, Greece. The Corinth Rift is an active extensional basin in the early stages of rift evolution, providing perfect opportunities for the study of early deep-water syn-rift deposits that are usually eroded from the rift shoulders due to erosion in mature basins like the Red Sea, North Sea and the Atlantic rifted margin. The depocentre is located at the exit of a structurally controlled sediment fairway, approximately 15 km from its main sediment source and 12 km basinwards from the basin margin coastline. Fieldwork, augmented by digital outcrop techniques (LiDAR and photogrammetry) and clast-count compositional analysis allowed identification of 16 stratigraphic units that are grouped into six types of depositional elements: A—mudstone-dominated sheets, B—conglomerate-dominated lobes, C—conglomerate channel belts and sandstone sheets, D—sandstone channel belts, E—sandstone-dominated broad shallow lobes, F—sandstone-dominated sheets with broad shallow channels. The formation represents an axial system sourced by a hinterland-fed Mavro delta, with minor contributions from a transverse system of conglomerate-dominated lobes sourced from intrabasinal highs. The results of clast compositional analysis enable precise attribution for the different sediment sources to the deep-water system and their link to other stratigraphic units in the area. Structures in the Amphithea fault block played a major role in controlling the location and orientation of sedimentary systems by modifying basin-floor gradients due to a combination of hangingwall tilt, displacement of faults internal to the depocentre and folding on top of blind growing faults. Fault activity also promoted large-scale subaqueous landslides and eventual uplift of the whole fault block.  相似文献   
3.
In order to model non‐Fickian transport behaviour in groundwater aquifers, various forms of the time–space fractional advection–dispersion equation have been developed and used by several researchers in the last decade. The solute transport in groundwater aquifers in fractional time–space takes place by means of an underlying groundwater flow field. However, the governing equations for such groundwater flow in fractional time–space are yet to be developed in a comprehensive framework. In this study, a finite difference numerical scheme based on Caputo fractional derivative is proposed to investigate the properties of a newly developed time–space fractional governing equations of transient groundwater flow in confined aquifers in terms of the time–space fractional mass conservation equation and the time–space fractional water flux equation. Here, we apply these time–space fractional governing equations numerically to transient groundwater flow in a confined aquifer for different boundary conditions to explore their behaviour in modelling groundwater flow in fractional time–space. The numerical results demonstrate that the proposed time–space fractional governing equation for groundwater flow in confined aquifers may provide a new perspective on modelling groundwater flow and on interpreting the dynamics of groundwater level fluctuations. Additionally, the numerical results may imply that the newly derived fractional groundwater governing equation may help explain the observed heavy‐tailed solute transport behaviour in groundwater flow by incorporating nonlocal or long‐range dependence of the underlying groundwater flow field.  相似文献   
4.
Based on spectropolarimetry for 47 type 1 active galactic nuclei observed with the 6-m BTA telescope, we have estimated the spins of the supermassive black holes at the centers of these galaxies. We have determined the spins based on the standard Shakura–Sunyaev accretion disk model. About 70% of the investigated active galactic nuclei are shown to have Kerr supermassive black holes with a dimensionless spin greater than 0.9.  相似文献   
5.
GRB 170817A, associated with the LIGO-Virgo GW170817 neutron-star merger event, lacks the short duration and hard spectrum of a Short gamma-ray burst (GRB) expected from long-standing classification models. Correctly identifying the class to which this burst belongs requires comparison with other GRBs detected by the Fermi GBM. The aim of our analysis is to classify Fermi GRBs and to test whether or not GRB 170817A belongs—as suggested—to the Short GRB class. The Fermi GBM catalog provides a large database with many measured variables that can be used to explore gamma-ray burst classification. We use statistical techniques to look for clustering in a sample of 1298 gamma-ray bursts described by duration and spectral hardness. Classification of the detected bursts shows that GRB 170817A most likely belongs to the Intermediate, rather than the Short GRB class. We discuss this result in light of theoretical neutron-star merger models and existing GRB classification schemes. It appears that GRB classification schemes may not yet be linked to appropriate theoretical models, and that theoretical models may not yet adequately account for known GRB class properties. We conclude that GRB 170817A may not fit into a simple phenomenological classification scheme.  相似文献   
6.
A constitutive model that captures the material behavior under a wide range of loading conditions is essential for simulating complex boundary value problems. In recent years, some attempts have been made to develop constitutive models for finite element analysis using self‐learning simulation (SelfSim). Self‐learning simulation is an inverse analysis technique that extracts material behavior from some boundary measurements (eg, load and displacement). In the heart of the self‐learning framework is a neural network which is used to train and develop a constitutive model that represents the material behavior. It is generally known that neural networks suffer from a number of drawbacks. This paper utilizes evolutionary polynomial regression (EPR) in the framework of SelfSim within an automation process which is coded in Matlab environment. EPR is a hybrid data mining technique that uses a combination of a genetic algorithm and the least square method to search for mathematical equations to represent the behavior of a system. Two strategies of material modeling have been considered in the SelfSim‐based finite element analysis. These include a total stress‐strain strategy applied to analysis of a truss structure using synthetic measurement data and an incremental stress‐strain strategy applied to simulation of triaxial tests using experimental data. The results show that effective and accurate constitutive models can be developed from the proposed EPR‐based self‐learning finite element method. The EPR‐based self‐learning FEM can provide accurate predictions to engineering problems. The main advantages of using EPR over neural network are highlighted.  相似文献   
7.
Impact angle plays a significant role in determining the fate of the projectile. In this study, we use a suite of hypervelocity impact experiments to reveal how impact angle affects the preservation, distribution, and physical state of projectile residues in impact craters. Diverse types of projectiles, including amorphous silicates, crystalline silicates, and aluminum, in two sizes (6.35 and 12.7 mm), were launched into blocks of copper or 6061 aluminum at speeds between 1.9 and 5.7 km s−1. Crater interiors preserve projectile residues in all cases, including conditions relevant to the asteroid belt. These residues consist of projectile fragments or projectile-rich glasses, depending on impact conditions. During oblique impacts at 30° and 45°, the uprange crater wall preserves crystalline fragments of the projectile. The fragments of water-rich projectiles such as antigorite remain hydrated. Several factors contribute to enhanced preservation on the uprange wall, including a weaker shock uprange, uprange acceleration as the shock reflects off the back of the projectile, and rapid quenching of melts along the projectile–target interface. These findings have two broader implications. First, the results suggest a new collection strategy for flyby sample return missions. Second, these results predict that the M-type asteroid Psyche should bear exogenic, impactor-derived debris.  相似文献   
8.
9.
The magnetic-field distribution outside a flat, infinitely conductive unbounded disk in the field of a point magnetic dipole is determined. A relationship is established between the problem of magnetic-field determination and the problem of the flow of an ideal incompressible fluid around an infinitely thin disk.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号