首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
  国内免费   1篇
地球物理   2篇
地质学   3篇
海洋学   1篇
  2019年   1篇
  2011年   1篇
  2009年   1篇
  2007年   1篇
  2001年   1篇
  1980年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
A point dilution test is commonly used in single-borehole tracer experiments designed to determine the Darcy velocity of a formation. This method is based on the concept that, in a borehole, a tracer's concentration declines as a consequence of the water flux. Based on theoretical simulations and field observations, this study indicates that for low-permeability, yet highly porous fractured formations, the common practice of excluding the effect of diffusive mass flux between the dissolved tracer within the borehole and the surrounding matrix may lead to significant errors in the assessment of the Darcy velocity. This conclusion was confirmed by a model adapted to simulate experimental data collected from a tracer test performed in a vertical, large-diameter (25-cm) borehole drilled along a subvertical fracture intersecting a chalk formation.  相似文献   
2.
Demonstrating the biogenicity of presumptive microfossils in the geological record often requires supporting chemical signatures, including isotopic signatures. Understanding the mechanisms that promote the preservation of microbial biosignatures associated with microfossils is fundamental to unravelling the palaeomicrobiological history of the material. Organomineralization of microorganisms is likely to represent the first stages of microbial fossilisation and has been hypothesised to prevent the autolytic degradation of microbial cell envelope structures. In the present study, two distinct fossilisation textures(permineralised microfossils and iron oxide encrusted cell envelopes)identified throughout iron-rich rock samples were analysed using nanoscale secondary ion mass spectrometry(NanoSIMS). In this system, aluminium is enriched around the permineralised microfossils, while iron is enriched within the intracellularly, within distinct cell envelopes. Remarkably,while cell wall structures are indicated, carbon and nitrogen biosignatures are not preserved with permineralised microfossils. Therefore, the enrichment of aluminium, delineating these microfossils appears to have been critical to their structural preservation in this iron-rich environment. In contrast,NanoSIMS analysis of mineral encrusted cell envelopes reveals that preserved carbon and nitrogen biosignatures are associated with the cell envelope structures of these microfossils. Interestingly, iron is depleted in regions where carbon and nitrogen are preserved. In contrast aluminium appears to be slightly enriched in regions associated with remnant cell envelope structures. The correlation of aluminium with carbon and nitrogen biosignatures suggests the complexation of aluminium with preserved cell envelope structures before or immediately after cell death may have inactivated autolytic activity preventing the rapid breakdown of these organic, macromolecular structures.Combined, these results highlight that aluminium may play an important role in the preservation of microorganisms within the rock record.  相似文献   
3.
To avoid unseating of a deck, an adequate seat width must be provided. The seat width is basically determined from maximum relative displacement between two bridge segments. Under a strong ground excitation, pounding between two decks may occur at a joint. The pounding will affect the response of two bridge segments. This research is conducted to investigate the effect of pounding on the relative displacement between two adjacent bridge segments. A simplified analytical model of two linear single‐degree‐of‐freedom systems is employed. To take into account the pounding, the laws of conservation of momentum and energy are applied. The analytical results are represented in the form of relative displacement response spectra with pounding effect. It is found that due to the pounding the relative displacement can be amplified, resulting in the requirement of a longer seat width to support a deck. The formulation of normalized relative displacement response spectra is presented together with an application example. It is found that the seat width determined from the relative displacement response spectra with pounding effect becomes close to the value specified in the Japanese design specifications for structures with large difference of natural periods. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   
4.
The Si stable isotope fractionation between metal and silicate has been investigated experimentally at 1800, 2000, and 2200 °C. We find that there is a significant silicon stable isotope fractionation at high temperature between metal and silicate in agreement with Shahar et al. (2009). Further we find that this fractionation is insensitive to the structure and composition of the silicate as the fractionation between silicate melt and olivine is insignificant within the error of the analyses. The temperature-dependent silicon isotope fractionation is Δ30Sisilicate-metal = 7.45 ± 0.41 × 106/T2. We also demonstrate the viability of using laser ablation MC-ICPMS as a tool for measuring silicon isotope ratios in high pressure and temperature experiments.  相似文献   
5.
6.
Using an integrated approach including satellite imagery analysis, field measurements, and numerical modeling, we investigated the damage to mangroves caused by the 2004 Indian Ocean tsunami at Pakarang Cape in Pang Nga Province, Thailand. Comparing pre- and post-tsunami satellite imagery of the study area, we found that approximately 70% of the mangrove forest was destroyed by the tsunami. Based on field observations, we found that the survival rate of mangroves increased with increasing stem diameter. Specifically, we found that 72% of Rhizophora trees with a 25–30 cm stem diameter survived the tsunami impact, whereas only 19% with a 15–20 cm stem diameter survived. We simulated the 2004 Indian Ocean tsunami using the nonlinear shallow-water wave theory to reproduce the tsunami inundation flow and investigated the bending moment acting on the mangrove trees. Results of the numerical model showed that the tsunami inundated areas along the mangrove creeks, and its current velocity reached 5.0 m s−1. Based on the field measurements and numerical results, we proposed a fragility function for mangroves, which is the relationship between the probability of damage and the bending stress caused by the maximum bending moment. We refined the numerical model to include the damage probability of mangrove forests using the obtained fragility function to investigate the tsunami reduction effect of mangrove forest. Under simple numerical conditions related to the mangrove forest, ground level, and incident wave, the model showed that a mangrove forest of Rhizophora sp. with a density of 0.2 trees m−2 and a stem diameter of 15 cm in a 400 m wide area can reduce the tsunami inundation depth by 30% when the incident wave is assumed to have a 3.0 m inundation depth and a wave period of 30 min at the shoreline. However, 50% of the mangrove forest is destroyed by a 4.5 m tsunami inundation depth, and most of the mangrove forest is destroyed by a tsunami inundation depth greater than 6 m. The reduction effect of tsunami inundation depth decreased when the tsunami inundation depth exceeded 3 m, and was mostly lost when the tsunami inundation depth exceeded 6 m.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号