首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   1篇
地球物理   2篇
地质学   1篇
天文学   1篇
  2018年   1篇
  2016年   1篇
  2014年   1篇
  2013年   1篇
排序方式: 共有4条查询结果,搜索用时 46 毫秒
1
1.
ABSTRACT

The present study demonstrates the use of a new approach for delineating the accurate flood hazard footprint in the urban regions. The methodology involves transformation of Landsat Thematic Mapper (TM) imagery to a three-dimensional feature space, i.e. brightness, wetness and greenness, then a change detection technique is used to identify the areas affected by the flood. Efficient thresholding of the normalized difference image generated during change detection has shown promising results in identifying the flood extents which include standing water due to flood, sediment-laden water and wetness caused by the flood. Prior to wetness transformations, dark object subtraction has been used in lower wavelengths to avoid errors due to scattering in urban areas. The study shows promising results in eliminating most of the problems associated with urban flooding, such as misclassification due to presence of asphalt, scattering in lower wavelengths and delineating mud surges. The present methodology was tested on the 2010 Memphis flood event and validated on Queensland floods in 2011. The comparative analysis was carried out with the widely-used technique of delineating flood extents using thresholding of near infrared imagery. The comparison demonstrated that the present approach is more robust towards the error of omission in flood mapping. Moreover, the present approach involves less manual effort and is simpler to use.
Editor Z.W. Kundzewicz; Associate editor A. Viglione  相似文献   
2.
3.
A new floor connecting system developed for low‐damage seismic‐resistant building structures is described herein. The system, termed Inertial Force‐Limiting Floor Anchorage System (IFAS), is intended to limit the lateral forces in buildings during an earthquake. This objective is accomplished by providing limited‐strength deformable connections between the floor system and the primary elements of the lateral force‐resisting system. The connections transform the seismic demands from inertial forces into relative displacements between the floors and lateral force‐resisting system. This paper presents the IFAS performance in a shake‐table testing program that provides a direct comparison with an equivalent conventional rigidly anchored‐floor structure. The test structure is a half‐scale, 4‐story reinforced concrete flat‐plate shear wall structure. Precast hybrid rocking walls and special precast columns were used for test repeatability in a 22‐input strong ground‐motion sequence. The structure was purposely designed with an eccentric wall layout to examine the performance of the system in coupled translational‐torsional response. The test results indicated a seismic demand reduction in the lateral force‐resisting system of the IFAS structure relative to the conventional structure, including reduced shear wall base rotation, shear wall and column inter‐story drift, and, in some cases, floor accelerations. These results indicate the potential for the IFAS to minimize damage to the primary structural and non‐structural components during earthquakes.  相似文献   
4.
Space astronomy in the last 40 years has largely been done from spacecraft in low Earth orbit (LEO) for which the technology is proven and delivery mechanisms are readily available. However, new opportunities are arising with the surge in commercial aerospace missions. We describe here one such possibility: deploying a small instrument on the Moon. This can be accomplished by flying onboard the Indian entry to the Google Lunar X PRIZE competition, Team Indus mission, which is expected to deliver a nearly 30 kgs of payloads to the Moon, with a rover as its primary payload. We propose to mount a wide-field far-UV (130–180 nm) imaging telescope as a payload on the Team Indus lander. Our baseline operation is a fixed zenith pointing but with the option of a mechanism to allow observations of different attitudes. Pointing towards intermediate ecliptic latitude (50° or above) ensures that the Sun is at least 40° off the line of sight at all times. In this position, the telescope can cover higher galactic latitudes as well as parts of Galactic plane. The scientific objectives of such a prospective are delineated and discussed.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号