首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地球物理   1篇
地质学   1篇
海洋学   2篇
  2022年   1篇
  2010年   1篇
  2009年   1篇
  2007年   1篇
排序方式: 共有4条查询结果,搜索用时 156 毫秒
1
1.
Izvestiya, Physics of the Solid Earth - An Erratum to this paper has been published: https://doi.org/10.1134/S1069351322100019  相似文献   
2.
Lithological, geochemical, and micropaleontological data indicate that the Late Glacial of the northwestern Okhotsk Sea (OS) is characterised by severe climatic and environmental conditions with mainly perennial sea ice coverage and low productivity accompanied by weak deep-water ventilation and a temperate formation of the upper Sea of Okhotsk Intermediate Water (SOIW). The age model of the studied core sediments was constructed by AMS 14C dating. The most severe environmental conditions occurred during the period 15.8–14.8 kyr, synchronous with cold Heinrich event 1. Insignificant regional environmental amelioration accompanied by an increase of productivity and ice weakening during summer occurred almost simultaneously with the Bølling–Allerøed (BA) warming. The obtained results distinguished both the Bølling and Allerøed warmings as having different environmental conditions. Oxygen content in the surface sediment was low, as seen from the production of the benthic foraminifera (BF) species. During 12.6–11.1 kyr, synchronous with the Younger Dryas (YD) cold event, the regional environment conditions were cold, but not as severe as the glacial ones. Some climatic warming since the Preboreal has stimulated sea ice melting and surface amelioration during the summer season, which in turn led to a productivity rise and changes in the water column and bottom environment. Some increase in the surface water stratification and the intensified oceanic diatom and surface radiolarian production is parallel with the development of a mesopelagic regime of productivity. The surface sediment condition favours BF abundance and domination by BF species tolerant to oxygen deficiencies. During the Boreal period more stable surface conditions were accompanied by continuously high productivity and an intensifying of its mesopelagic regime.Significant regional climate warming since the Atlantic (9 kyr ago) strongly intensified the summer sea ice melting in the OS, and this created considerable surface environment amelioration with the preferential transport of bacteria and phytodetritus into the SOIW. Further considerable warming of the regional climate from 6 kyr ago contributed to slight sea ice changes, surface water warming, and the enhancement of its stratification; all typical for most of the OS. Along with a high nutrient supply from the Amur River, the NW OS experienced a strong diatom production increase with the maximum amount occurring during the last 3.6 kyr. This changed the productivity type and organic matter export into the water column while increasing the feeding of the “productive” Plagoniidae spp. group and decreasing the microbial biomass supply into the upper SOIW. Some sea surface water cooling or saltier conditions at the beginning of the Subatlantic (2.4–1.8 kyr) was followed by its warming or freshening 1.5–1.0 kyr ago, which likely correlated with the Medieval Warm Period. In turn, that probably led to strong surface water stratification, productivity deterioration and considerable changes in the overall NW OS environment. The established sequence of the northwestern OS environmental changes during the Late Glacial–Holocene is related to the Northern Hemispheric climate changes and was likely forced by atmospheric teleconnection in line with the polar circulation index variability.  相似文献   
3.
The present investigation was targeted at diatom composition studies in the surface sediments (0–1 cm) sampled in the Sea of Okhotsk and the northwest Pacific in the depth range from 130 to 6110 m. The taxonomic analysis, as well as the quantitative (the diatom cell abundance per sediment dry weight unit) content and ecological group definition, was applied. Ten diatom taxa are the main body (80–100%) of the diatom assemblages: Bacterosira bathyomphala, Chaetoceros spp. (spores), Actinocyclus curvatulus, Thalassiosira latimarginata (group), T. antarctica (spores), Neodenticula seminae, Rhizosolenia hebetata f. hiemalis, Thalassiothrix longissima, Coscinodiscus marginatus, Coscinodiscus oculus iridis. The relative content of these species reflects the sedimentation conditions for different parts of the sea: the shelf, the continental slope, the open sea, and the ocean. The highest diatom content (45.6.3–60.0 106 per g of dry weight) was found for the surface sediments in the central part of the Sea of Okhotsk and the continental slope of western Kamchatka.  相似文献   
4.
The combined micropaleontological (spores and pollen, diatoms, benthic foraminifers), lithologic, and isotopic-geochemical analysis of sediments from the northern shelf of the Sea of Okhotsk recovered by hydrostatic corer from the depth of 140 mbsl elucidated environmental changes in this part of the basin and adjacent land areas during the last 12.7 thousands cal. years. Geochronological scale of the core is established using the acceleration mass-spectrometry method for radiocarbon dating of benthic Foraminifera tests. The first insignificant warming in the northern part of the sea after glaciation occurred in the mid-Boreal time (9.6 ka ago) but not at the onset of the Holocene. The strongest warming in the region took place in the mid-Atlantic epoch to reach climatic optimum in the second half of the Subboreal (6 to 2.5 ka ago). A cooling in the northern shelf and adjacent land areas is established at the beginning of the Subatlantic (2.5 ka). A comparison of results obtained for Core 89211 with dated hydrological and climatic changes in central and southern parts of the Sea of Okhotsk (Gorbarenko et al., 2003, 2004) is used for a high-resolution analysis of climatic fluctuations in the study region and other areas of the basin during deglaciation and the Holocene.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号